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Summary. The hedging theorem of [3] describes the initial endowments necessary
for the super-replication of a given contingent claim in a model with transaction
costs, assuming the continuity of the price process. We demonstrate that this theo-
rem may fail if the price process is discontinuous.

1 Model specification

In [2], [3] and [4] the authors describe initial portfolios which allow to hedge a
given contingent claim in a market model with proportional transaction costs.
All these articles assume the continuity of the price process. We show that
this hypothesis is essential for the validity of the theorem. We give a short
description of the model and refer to [3] for more detailed information.

Let (£2,F,(F:),P) be a stochastic basis with finite time horizon T and
Fo trivial. Let S be a d-dimensional semimartingale with strictly positive
components describing the price evolution of d assets quoted in some reference
asset (traded or not).

For any d-dimensional process G we define G as

1
G} = %7 1 <i<d.

Let (A\Y) be a d x d matrix with 0 diagonal and nonnegative entries rep-

resenting the proportional transaction costs: each time we transfer 1 unit of
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wealth from asset i to asset j, our position in asset j increases by 1 and our
position in asset j decreases by (1 + A*). The value of a portfolio in the d
assets can be represented by elements of R%. We define the polyhedral cone

- M= {xERd: there is ™ >0, 1 <i,j <d
d d
such that z° = Zaji — Zaij}.
j=1 j=1

This is the set of positions which can be obtained from 0 by making transfers
(described by the a¥) from asset i to asset j.

The solvency cone K := M + Rﬂlr is then the positions from which making
a suitable transfer we may arrive at a position in Ri. It induces a partial
order on R%: 2 <y <= y —x € K. The reader can check that if not all of
the A\ are 0 then K = M.

We also introduce

Ki(w) = {zeR?: (2'S}(w),...,2"S}(w)) € K}.

The value of the agent’s position at time ¢ in asset ¢ is supposed to follow

the equation R
Vi=Viw,B)=v'+V'.S" + B,

where v € R? is an initial position, B is the agent’s strategy, - denotes stochas-
tic integration. We suppose that B is an adapted process with bounded vari-
ation such that all its increments lie in —M . This condition tries to grasp the
idea of self-financing portfolio.

The physical quantity V;* of asset i at time ¢ is found to be equal to

Vi(v,B)=v'/Si+(1/8")- B}, 1<i<d. (1)
We call a strategy B admissible, if there exists x > 0 such that
—kS; = VPE telo,T).

The set of admissible strategies is denoted by B,. L° denotes the set of d-
dimensional random variables. Lg is the set of random variables U for which
there is kK > 0 with —xS7 < U. We define the set of contingent claims which
can be super-replicated from v as

AV :={U € LY : there exists B € By, such that Vi (v, B) = U}.
We also introduce
A :={V e L° : there exists U € A’ such that V'Si = U?, 1 <i < d}.

Remark 1. 1f M = K and Vr(v,B) = U we can always modify B to B’ by
adding a last transfer (a —K = —M-valued random variable) at time 7" such
that Vr(v, B’) = U. Hence in this case

A = {?T(U7B) : Be By}
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For any cone C' C R? we define its positive dual cone as
C*:={zeR?: zw>0forall z c C}.

We now define the set of dual variables which will figure in the hedging
theorem: D denotes the set of martingales Z such that Z;(w) € K* for all
0 <t < T and for almost all w.

The set of initial positions allowing to hedge a given H € LY is defined as

I'y:={veR’: Hec A}

In the framework presented above, we mean the following assertion by
hedging theorem:

I'y={veR?: E[ZrH] < Zov, Z € D}. (%)

In [3] (x) is shown in the case where int K* # &, S! = 1, S is continuous
and there exists P’ ~ P such that S is a P’-martingale. One can relax the
hypothesis on the existence of an equivalent martingale measure, see [4]. On
the other hand, in section 2 we demonstrate that the continuity assumption
can not be dropped.

We now recall a notion of convergence which has proved to be useful in
investigations related to arbitrage theory, see [1]. We say that the sequence ¢,
of random variables is Fatou convergent to ( if there is kK > 0 with —xk1 < (,
for all n and ¢, — ( a.s., here 1 denotes the vector all of whose components
are 1.

Lemma 1. If (%) holds then the set A° is Fatou closed.
Proof. Let us take any sequence ¢, € A® such that for each n
_K/l j C’Vh

for some k > 0. Let us suppose that (,, — ¢ almost surely. As (, € AO, (%)
implies that
E(Zr.] <0, ZeD.

By the Fatou-lemma we get that
E[ZTC] < 07 Z € D>

and () guarantees ¢ € A°.

2 The counterexample

We claim that there is a bounded martingale S such that the corresponding
A? is not Fatou closed, hence Lemma 1 contradicts (x).
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We take independent random variables 7, &;, 4« > 1, with distribution

P{in=1}=P{n=-1} =1/2,
P{& = ai} = exp(—277), P{& = —1} =1 —exp(—277),

where 0 < a; < 1 is such that E[¢;] = 0.
We consider a two-asset model on the interval [0, 1], S* = 1 constant,

=2+ 22 fl I[l 1/(i+1), 1]( ) + 2_1a1n(w)l{1}(t).

Clearly, 1/2 < S? < 7/2 is a martingale with respect to its natural
filtration: the convergence of the infinite sum follows from || < 1. Let
A2 = 221 = 1/2. We see at once that (—1,3/2) and (3/2,—1) generate the
cone K, int K* # @ and K = M. We introduce e' := (1,0), e*:= (0,1).

The random variable

3
-—_ 1 2
¢:= I{gi:ai, i1} (e B 2512_ ‘ )

is in the Fatou closure of A°: let us take the strategy B,, which consists of
effectuating a portfolio change I{¢, 4, 1<j<n} (€' — (3/2)e®) € —K at time
1 —1/n and otherwise doing nothing.

~ 3
Vi(0, By) := Iig;=a,, 1<j<n}( 952 )
1-1/n

62) —(
almost surely and this sequence is uniformly bounded. In order to check that
¢ ¢ A° we notice that the event

D:={we: &w)=ua;, i =2 1; nw) =-1}

has positive probability:

P(D) :—exp( 22 )

On D the trajectories of S? increase on [0,1) to S7_ and jump downwards
at the terminal point. Thus, for w € D, t € [0, 1], we have that

—Ky(w) C J(w),
where J(w) := cone{wy, wa} \ Rywy with
wy = (3/(255),-1) = (3/4,-1), wy = (1,-3/(2sup,c(o.1) S7))-

As J is a convex cone, formula (1) entails that on D we have V; (0, B) € J for
any admissible B while ¢ takes values on the ray Ryws\ {0}, hence V1 (0,B) =
¢ is not possible. In view of Remark 1 we may conclude that ¢ ¢ A0,



398 Miklés Résonyi
References

1. Delbaen, F., Schachermayer, W. (1994): A general version of the fundamental
theorem of asset pricing. Math. Ann., 300, pp. 463-520

2. Kabanov, Yu. M. (1998): Hedging and liquidation under transaction costs in
currency markets. Finance Stoch., 3, pp. 237-248

3. Kabanov, Yu. M., Last, G. (2002): Hedging under transaction costs in currency
markets: a continuous-time model. Math. Finance, 12, pp. 63-70

4. Kabanov, Yu. M., Stricker, Ch. (2002): Hedging of contingent claims under
transaction costs. Prépublications du Laboratoire de Mathématiques, Université
de Franche-Comté, Besangon.



	1 Model specification
	2 The counterexample
	References



