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Introduction

In the celebrated paper [51] Wong and Zakai investigated the convergence of
certain ordinary differential equations (ODEs) which, in particular, involved
piece-wise linear approximations of a one-dimensional Wiener process. They
showed that the solutions to these ODEs converge almost surely to a solution
of a certain Stratonovitch stochastic differential equation (SDE) and not an
It6 SDE. This result initiated considerable (and varied) research into the ap-
proximation of solutions to SDEs. The multi-dimensional Wiener process® was
first studied by Clark in his PhD thesis [16] (see also [17]), McShane in [42]
and by Stroock—Varadhan in [48]. Let us mention also papers by Malliavin [35]
and Tkeda—Watanabe [28], where the authors consider and compare approxi-
mations involving different regularisations of the Wiener process. Elworthy in
[24] announced (and in [25] proved with full details ascribed to Dowell [23]) a
Hilbert space version of the piece-wise linear approximation and applied his
result to the approximation of stochastic flows on manifolds. Moulinier, [40],
studies continuity properties and rates of convergence, whereas Mackevicius,
[34], considers a more general case of approximations of SDEs driven by semi-
martingales. One should not forget to mention important works [5] by Bismut
and [38] by Malliavin. Doss [22] and Sussman [49] independently studied the
question of continuity of the solutions to Stratonovitch equations with respect
to an individual path of Wiener process. Their very interesting results were,
however, restricted (as in [51]) to a one dimensional BM or, in the case of
[22], to a multi-dimensional BM but under commutativity assumptions on

3 Let us point out here that the convergence of stochatic integrals with respect to
multidimensional Wiener process has also been investigated by Wong and Zakai
in [52].
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the vector fields. The continuity question was later investigated by T. Lyons
and coworkers using an ingenious method first described in [33].

Furthermore, there has also been much work done on the approximation
of solutions to stochastic partial differential equations (SPDEs). We refer the
reader to the paper by BrzeZniak and Flandoli, [11], which contains more
recent results on parabolic and hyperbolic evolution equations. Moreover, in
the introduction to this paper they provide a brief account (with references)
of the work done in this area by various authors such as Gyongy, Kunita and
Pardoux.

In this paper we prove results which are in the same spirit of the results
of Wong—Zakai. However, not only is our Wiener process infinite dimensional
but we are also concerned with SDEs taking values in Banach spaces, which
is one of the novelties of our work. It has long been known that there are
problems even in defining a stochastic It6 integral for general Banach spaces.
However, a theory of stochastic integration has been developed for M-type 2
or 2-uniformly smooth Banach spaces, see* Neidhard [44], Belopolskaya and
Daletskii [3], Dettweiler [20] and references therein. SDEs and SPDEs in M-
type 2 Banach spaces have been studied by both the authors and Elworthy,
see [6], [9], [7], [14], with more recent work done by Brzezniak and Elworthy
concerning SDEs on Banach manifolds which are modeled on M-type 2 Banach
spaces, see [10].

The results in the first part of the paper are an extension of results given
in the thesis by Dowell, [23] (on which the earlier mentioned proof in [25] is
based), who considers approximations of SDEs in infinite dimensional sepa-
rable Hilbert spaces. The extension to the Banach space case is non trivial.
Indeed, Dowell was familiar with the theory of stochastic integration in 2-
uniformly smooth Banach spaces, but was unable to extend his results to this
case. When considering Stratonovitch equations in Banach spaces the main
difficulty lies in dealing with the ‘trace’ map, see the discussion in Section 2.
Although our problem is technically more difficult, we actually prove stronger
results than Dowell. Under the assumption that the coefficients are globally
Lipschitz and bounded, Dowell proves convergence in L? and convergence in
the space of continuous functions in probability. However, we prove conver-
gence in the space of continuous functions in L?, p > 2, and for p > 2 we prove
estimates which give a rate of convergence. This in turn proves almost sure
convergence of the approximated ODEs to the Stratonovitch SDE, analogous
to the original result of Wong—Zakai. These results first appeared in the PhD
thesis by Carroll, [14].

The second part of the paper is concerned with certain applications to
SDEs on loop spaces. However, the assumptions on the coefficients described

4 1In fact, the authors have recently become aware of an earlier paper [27] by
Hoffmann-Jorgensen and Pisier, where such an integral was constructed (although
only for 1-dimensional square integrable martingales and for deterministic inte-
grands).
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above are too strong for the applications we have in mind. Making use of our
earlier results we prove convergence in the space of continuous functions in
probability in the case of equations whose coefficients are locally Lipschitz
and of linear growth. The importance of these new results is that they can be
applied to the recent results of Brzezniak and Elworthy concerning solutions to
SDEs on loop spaces. We prove convergence in probability of equations taking
values in a Banach manifold M which is modeled on an M-type 2 Banach
space. In particular, M is a certain Sobolev—Slobodetskii space of loops on
a compact, finite dimensional manifold M. There are certain implications of
this result when considering SDEs on (both finite dimensional and Banach)
manifolds. In particular, it emphases the need for using Stratonovich integrals
as opposed to Ito integrals when dealing with SDEs on manifolds.

The layout of the paper is as follows. In Section 1 we introduce the relevant
definitions and results concerning stochastic integration in M-type 2 Banach
spaces. This is to make the paper self-contained. In Section 2 we consider
SDEs whose coefficients are globally Lipschitz and bounded. We compare our
results with those of Dowell and discuss the technical difficulties that need
to be overcome when dealing with the Banach space case. In Section 3 we
consider SDEs whose coefficients are locally Lipschitz and of linear growth.
The result of Section 3 is then applied to a class of SDEs on loops, as studied
by BrzeZniak and Elworthy in [10] and to diffeomorphism groups as studied
in [9].

At the end of our Introduction let us mention one important consequence
of our results: ‘the transfer principle’. By this we mean a general statement of
the form: Whatever is true for ordinary differential equations remains true for
the stochastic differential equations in the Stratonovitch form. As an example
of such a principle, we prove invariance of a manifold M under solutions to
Stratonovitch SDEs in the case when the vector fields are tangent to M, see
Theorem 5. See e.g. [18] for a finite dimensional case.

1 Stochastic Integration in M-type 2 Banach Spaces

The following definition is fundamental for our work.

Definition 1. A Banach space X is called M-type 2 if and only if there ex-
ists a constant C(X) > 0 such that for any X -valued martingale {My} the
following inequality holds

sngUMkF] < C(X) D E[|My — My, (1)
k

Any Hilbert space is an M-type 2 Banach space. In such a case we then
have equality in (1) with C'(X) = 1. The Lebesgue Function spaces L?, p > 2,
are examples of M-type 2 Banach spaces which are not Hilbert spaces.
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The theory of stochastic integration in infinite dimensional Hilbert spaces
has been developed and is well understood. However, for general separable
Banach spaces there are difficulties in defining a meaningful It6 integral. In
an unpublished thesis by Neidhardt, [44], a theory of stochastic integration
was developed for a certain class of Banach spaces known as 2-uniformly
smooth Banach spaces. A Banach space X is said to be 2-uniformly smooth
if and only if for each z, y € X

1
e+ ylk + 1 —ylk) <lalk + Alylk, (2)

for some constant A > 0. If X is a Hilbert space then equality holds in (2) with
A =1, i.e., the norm |.|x satisfies the parallelogram law. Independently of
Neidhardt, similar work on stochastic integrals was carried out by Dettweiler,
see [20] and references therein. It is known, see [45], that a Banach space is
2-uniformly smooth if and only if it is M-type 2. Either of the above two
inequalities make it possible to define a meaningful It integral for this class
of Banach spaces. However, the M-type 2 inequality (1) will prove to be the
most useful for our needs. We briefly outline the construction of the It6 integral
in M-type 2 Banach spaces and refer the reader to [10] and [14] for a more
detailed summary and further references.

Definition 2. For separable Hilbert and Banach spaces H and X we set
RH,X):={T:H— X:TeL(H X) and T is y-radonifying}, (3)

where L(H, X) denotes the Banach space of bounded linear operators between
H and X. By T being y-radonifying we mean that the image T(yp) := g ©
T~ of the canonical finitely additive Gaussian measure vy on H is o-additive
on the algebra of cylindrical sets in X.

Remark 1. The algebra of cylindrical sets in X generates the Borel o-algebra,
B(X) on X, see [31]. Thus T'(yy) extends to a Borel measure on B(X) which
we denote by vr. In particular, vy is a Gaussian measure on B(X), i.e., for
each A € X* (the dual of X), the image measure A(vr) is a Gaussian measure
on B(R). The covariance operator of vy equals TT*: E* — E.

For T € R(H, X) we put

17120 x) = /X 2f? dvr (a). (4)

As vp is Gaussian, then by the Fernique-Landau—Shepp Theorem, see [31],
IT||r(z,x) is finite. Furthermore, see [44], R(H, X) is a separable Banach
space endowed with the norm (4).

Definition 3. Let E be a separable Banach space. We say that i : H — E is
an Abstract Wiener Space, AWS, if and only if i is a linear, one-to-one map
and i € R(H,E). If i : H — E is an AWS, then the Gaussian measure v; on
E will be denoted by 1 and called the canonical Gaussian measure on E.
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Remark 2. Many authors require i(H) to be dense in E in the definition of an
AWS. This is an unnecessary restriction for us. In fact, Sato, [46], proved that
given a separable Banach space with Gaussian measure u, then there always
exists a Hilbert subspace H C E such that i : H — F is an AWS, with p = v,
where ¢ is the inclusion mapping. The imbedding ¢ is not dense in general.

Remark 3. The Hilbert space H appearing in the above definition is often
referred to as the reproducing kernel Hilbert space, RKHS, of (E, u).

Suppose that a triple (£2,F,P) is a complete probability space and let
i: H— FE be an AWS. Let w(t), t > 0, denote the corresponding E-valued
Wiener process, i.e., a continuous process on F such that:

(i) w(0) =0 as;

(ii) the law of the random function t~%/?w(t) : 2 — E equals y, for any
t > 0;

(iii) if F is the o-algebra generated by w(r), r € [0, s], then w(t) — w(s) is
independent of F; for any t > s > 0.

Remark 4. In view of (ii) it is not difficult to show that for p > 0,

_]EH ((t) } /w du(z (5)

t 1/2
Furthermore by the Fernique-Landau—Shepp Theorem, see [31], m, < co for
each p > 0.

Let X be an M-type 2 Banach space and T € (0,00). For p > 1, let
MP(0,T; L(E, X)) be the space of (equivalence classes of) progressively mea-
surable functions ¢ : [0,T] x §2 — L(E, X) which satisfy

T
| [ 1608 5. 21| <00

(with an analogous definition for the space M?(0,T; R(H, X))).

Let M%.,(0,T; L(E, X)) be the subspace of those £ € MP(0,T; L(E, X))
for which there exists a partition 0 = t; < t; < --- < t, = T such that
€(t) f(tk) for t € [tkathrl) 0<k<n-1,keN.

For & € MZ,,(0,T; L(E, X)) define a measurable map I(£) : 2 — X by

n—1

1(€) =Y &(t) (wltisr) — w(tr)). (6)

Jj=1

The following lemma is crucial for the successful construction of the It6
integral.
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Lemma 1. Suppose i : H — E is an AWS with canonical E-valued Wiener
process w(t), t > 0, X is an M-type 2 Banach space and T € (0,00). Then for
§ € Mg, (0,T; L(E, X)), I(€) € L*( X), E[I(§)] = 0 and

T
B[R] <O [ Bl o )] & (7)

Remark 5. Lemma 1 may be proved using either the inequality (1) or the
inequality (2), along with the fact that L(F, X) is contained in R(H, X) via
the continuous map

L(E,X)3 ¢+ €oi € R(H,X).

Remark 6. In the case when X is a Hilbert space (7) reads

T
E[1()%] = E[ [ o it .

which, of course, is the well-known Itd Isometry. The existence of the Ito
Isometry is due to the ‘nice’ geometrical properties of the Hilbert space, i.e.,
the existence of an inner product. In general Banach spaces we lose the notion
of ‘geometry’ and this is where the difficulty lies when one wishes to construct
an Itd Integral. Although we do not have the It6 Isometry, the inequality (7)
is enough to ensure that we can control the ‘size’ of the random variable I(&)
given by (6).

The fundamental property of the map I is that it extends uniquely to a
bounded linear map from M?(0,T; R(H, X)) into L?(£2; X). This is a conse-
quence of (7) and the fact, proven in [44], that M3 (0,T; L(E, X)) is dense

in M?(0,T; R(H, X)) For ¢ € M*(0,T; R(H, X)), the value of this extension
will be denoted by fo t) dw(t). Furthermore, we have

Theorem 1. Suppose i : H — FE is an AWS with corresponding FE-valued
Wiener process w(t), t > 0, and X is an M- type 2 Banach space Assume
that for T >0, & € M?(0,T; R(H, X)) and let I(r) := [ &( t) for r > 0.
Then, I(r) is a continuous X -valued martmgale and for any D E (1 00) there
exists a constant C, > 0, independent of T and &, such that

Bl sw 10| <6 [ CE[IEO B x] dt)p/z- ®)

The inequality (8) is the Burkholder inequality. The case p = 2 was proved
in [44] and later, using the M-type 2 inequality, was proved in [20] for any
p € (1,00).

Remark 7. In the above we may replace R(H, X) by L(E, X), see Remark 5.
In particular, fo (t) dw(t) exists for any ¢ € M?(0,T; L(E, X)) and satisfies
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/ (1) du(t }<cp(/oTn«:|a<t>%(E,X>dt)p/2. 9)

For suitable maps f : X — X and g : X — R(H,X) we consider the
following problem

{ sup
0<r<T

{ dE(t) = f(E()) At +g(E(F)) dw(t) 10)

5(0) = 607
where & : 2 — X is Fp-measurable. A continuous and adapted process

€:[0,T) x 2 — X is said to be a solution to the It6 equation (10) if and only
if for all t € [0,T]

f(t)—€(0)+/0 f(&(r) dr+/0 g(§(r)) dw(r)  as. (11)

We have the following existence and uniqueness theorem (see Theorem 2.26
in [10], where only the case p = 2 was studied; however, the proof carries over
to any p € [1,00) without any substantial difference).

Theorem 2. Assume that i : H — E is an AWS, {w(t)}i>0 the correspond-
ing Wiener process on E and X is an M-type 2 Banach space. Let T > 0
be fived. Suppose the maps f : X — X and g : X — R(H,X) satisfy the
following linear growth and Lipschitz conditions:

(i) (Linear Growth Condition) there exists K > 0 such that for each v € X

max{|f(2)|x, 9@l rx)} < K1+ |z|x);
(ii) (local Lipschitz continuity) for any xo € X there exists an 79 > 0 and
Lo > 0 such that for any x, y € B(xo,r0) :={x € X : |z — x| < 10}
max{|f(=) = f(¥)lx, l9(@) — 9l rrx) } < Lolr — ylx.

Let p>1 and & : 2 — X be Fo-measurable such that E[|& %] < co.
Then there exists a unique & € MP(0,T; X) which is the solution to the
problem (10). Moreover, the following estimate holds:

E[ sup s(ﬂﬁ;} < G, (E[l& L] + 7). (12)
0<t<T

Remark 8. One should point out that the local Lipschitz condition (ii) above
is weaker than the usual one:

(ii") (Lipschitz continuity on balls) for any R > 0 there exists Cr > 0 such
that

max{|f(x) = f(¥)lx, llg(@) — gl rx) } < Crlz —ylx

for all z, y € X with |z|x, |y|x < R
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The condition (ii) is more suitable for studying equations on Banach mani-
folds. Both conditions are equivalent if dim X < oo.

So far we have introduced the Ito integral and defined what we mean
by a solution to an It6 equation. We now turn to Stratonovitch integrals
and Stratonovitch equations. We first need to introduce some notation. By
Ly(E; X)) we denote the space of bounded bilinear maps, A: Ex E — X. Let
i: H— E be an AWS. We define the map tr: Ly(F; X) — X by

tr/l::/E/l(e,e)d,u(e), (13)

where p is the canonical Gaussian measure on E. In view of the Fernique—
Landau—Shepp Theorem, tr is a bounded linear map. Note that the tr map
depends on the choice of AWS.

The following two definitions are taken from [10].

Definition 4. Suppose i : H — E is an AWS with canonical E-valued Wiener
process w(t), t > 0, and X is an M-type 2 Banach space. Let T € (0,00) and
&(t), t €10, T] be a stochastic process such that for any t > 0

&(t) =£(0) + /0 a(r)dr + /0 b(r) dw(r) a.s.,

where a € M*(0,T;X) and b € M*(0,T; L(E, X)). For a C* map g: X —
L(E, X) we define the Stratonovitch Integral of g(£(t)) as

¢ ¢ 1t /
/0 g(ﬁ(r)) o dw(r) .—/O g(f(r)) dw(r) + 5/0 tr[g (f(r)) b(r)] dr.  (14)

Remark 9. By a C! map we mean that g : X — L(E, X) is Fréchet differen-
tiable with continuous Fréchet derivative ¢’ : X — L(X, L(E, X)). Further-
more, note that

g (&(r) b(r) € L(E,L(E, X)) ~ Ly(E; X)
so that tr[g’(&(r)) b(r)] appearing in (14) is well defined.

Remark 10. In the definition of the Stratonovitch Integral, it is not acci-
dental that we have chosen

be M*(0,T;L(E,X))  rather than b€ M?(0,T;R(H, X)).

For a discussion why one needs to consider processes in M?(0,T; L(E, X))
and not in the larger space M?2(0,T; R(H, X)), see [10], Appendix A.

Definition 5. Suppose i : H — FE is an AWS with canonical E-valued Wiener
process w(t), t 2 0, and X is an M-type 2 Banach space. Let T € (0,00). Let
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g be as above and let f : X — X be a continuous function. We say that an
adapted and continuous X -valued process &(t), t € [0,T], is a solution to the
Stratonovitch equation

de(t) = f(&(t)) At + g(&(t)) o dw(t) (15)

if and only if it is a solution to the Ité equation

ae(t) = (F(£) + 5 el (€0) 9(6()] ) dt + g(E(0) du(r). (16)

Thus &£(t) is a solution to (15) if and only if it satisfies for each t > 0

+ 5/0 tr[g’ (£(r)) g(&(r))] dr+/0 g(&(r)) dw(r) a.s. (17)

2 Approximations of SDEs with Lipschitz and bounded
coefficients

Let X be an M-type 2 Banach space and i : H < E an AWS with correspond-
ing E-valued Wiener process w(t), t > 0. We impose the following conditions
on the coefficients f and g.

(A1) f: X — X is a C'-map which is Lipschitz and bounded.
(B1) g: X — L(E, X) is a C! map such that the maps g and ¢’ are Lipschitz
and bounded.

We should point out that as a consequence of (B1), the map tr(¢’g) : X — X
is Lipschitz and bounded, where tr(¢'g)(z) := tr[¢’(z) g(z)], z € X, see (13).
Let zp € LP(§2,X), p > 2 and T > 0, be fixed but arbitrary. In view of
Theorem 2 there exists a unique continuous progressively measurable process
x:[0,T] x 2 — X such that for each ¢t € [0,T],

+ %/0 tr[g’(x(r)) g(=(r))] dr+/0 g((r)) dw(r), as. (18)

Moreover, we have the estimate

E[ sup |x<t>|5;} < Gy (E[Jwol"] + 7). 19)
0<t<LT

Note that x is a solution to the Stratonovitch equation
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de(t) = £(2() + g(a(®)) o duw(t) (20)
and z may be written as
t t
z(t) = z(0) +/0 f(x(r)) dr —|—/0 g(x(r)) o dw(r), (21)

where the last integral on the RHS of (21) is the Stratonovitch integral.
For each n € N, let m,, be a partition of [0, 7], i.e.,

0:t0<t1<t2<-~-<tN(n):T.

We assume that each partition satisfies

Cy
hm, = t — ] < —, 22
mesh 7 ngglﬁ();),J k1 — tk] - (22)
N(n) < Can, (23)

where C; and C are constants independent of n. For each partition 7,, n € N,
we consider the following piece-wise linear approximation of the FE-valued
Wiener process w(t):

t—1;

m () = w(ty) + ———
Wra (1) = wlts) +

(w(tiﬂ) — w(ti)), t e [ti,ti+1], 0<1< N(TL)

Let z, : [0,T] x £2— X be the solutions to the family of ODEs (indexed by
wE N)

e, (t) dwr, (1)
T = S, () + g, (1) — 5 (24)
xﬂn(o) = Zo-

The family of equations (24) may sometimes be written

{ dzr, (t) = f(zr, @) dt + g(2r, (t)) dwn, (2)

Zr, (0) =g

In particular, for t € (¢;,t;41),1=0,...,N(n) — 1, x,, takes the form

e (1) = 2 (t:) +/ttf(:z:7,n(s)) ds+/tg(:l:7,n(s)) (M) ds.

. tiv1 — t;

i ti
Using the above notation, we now state our first result.

Theorem 3. For p > 2 and n € N
]E{ sup |z(t) —xﬂn(t)v)](} < CnP/?, (25)
0<t<T

where C' is a constant independent of n and depending only on the space X,
p, T, my (see (5)), Ci, Ca and the bounds and Lipschitz constants of f, g,

g and tr(g'g).
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Corollary 1. For each T > 0 z,, (.) — z(.) in C(0,T;X) in probability,
i.e., for each € >0

P{w: |x('aw)_Iwn('7w)|C(0,T;X) >€}—>O (26)

as meshm, — 0. Here C(0,T; X) is the space of X walued continuous func-
tions on the interval [0,T].

Corollary 2. For each T > 0,
T, () — z(.) in C(0,T;X) almost surely as n — co. (27)

Remark 11. Theorem 3 is an extension of a result proved in the PhD thesis
by Dowell, [23]. There, the case p = 2 with X being a Hilbert space was
treated. In particular, Dowell proved the following two results (more or less
independently of one another), see Theorems 5.2 and 5.7 in [23]:

e For each T >0

sup E[|z(t) — ax, (t)[%] — 0 as meshm, — 0. (28)
0<t<T

eForeachT >0and e >0

P{w o osup |z(t,w) — 2p, (tw)|x > 5} —0 as meshm, — 0. (29)
0<t<T

Our result is a much stronger and more general result than Dowell’s for several
reasons. Firstly, Theorem 3 holds in the case when X is an M-type 2 Banach
space. Secondly, we have convergence in LP(2;C(0,T; X)), p > 2, whereas
Dowell only proved a weaker form of convergence, i.e., uniform convergence
in L2(£2; X), see (28). With this stronger form of convergence, convergence
in C(0,T; X) in probability is then a simple consequence of the Chebyshev
inequality and this gives us Corollary 1. Finally, for p > 2 we prove estimates
which give a rate of convergence, see (25). Using these estimates it is straight-
forward to prove almost sure convergence in C(0,T;X) (see Corollary 2).
Indeed, the estimates (25) imply that, since p > 2,

oo oo 1
E{Z |z — xﬂ'n|C(0,T;X):| < CZ 2 < Q.
n=1 n=1
Thus, almost surely
oo
Z |z — xﬂn‘C(O,T;X) < o9,
n=1
which implies that almost surely

|z — 2, |c0,r:x) — 0 as n — oo.
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The method Dowell uses to prove (28), which itself is a generalization of a
similar result in [43], carries over to some extent to the case p > 2 and X is
an M-type 2 Banach space. The Burkholder inequality (9) is the main tool we
use here. However, although Dowell was familiar with stochastic integration
in 2-uniformly smooth Banach spaces and the Burkholder inequality (via the
thesis of Neidhardt), he was not able to deal with the Banach space case
because of the term involving the tr map. There is a considerable level of
difficulty in dealing with the tr map in Banach spaces as opposed to Hilbert
spaces. We deal with this problem by making use of the M-type 2 property of
our space X, in particular, the inequality (1).

Proof of Theorem 3. Fix a partition 7 = m, = {0 < to <t1--- <ty =T}
and denote =, by y. Set x; = z(t;), y; = y(t;) = z=(¢;), Ajt =t;41 —t; and
Ajw = w(tj;1) — w(t;). To simplify the notation we put f identically zero.
This will not affect the result owing to the conditions put on f. Moreover, C'
will denote a generic constant depending only on the space X, p, T', m,, Ci,
Cy the bounds and Lipschitz constants of g, ¢’ and tr.

For t € [0,T], let k be the largest integer such that ¢, < t. Moreover, for
r € [0,T], set R(n) = max{m : t,, < r}. Then, using the triangle inequality,
we have

E| sup Jo(0) - w0 | < OB sup (1a(0) - o)l + utts) = w(0)% )]

otsr ogtr

+OE[ s folo) —u(w]. (@0
0<k< R(n)

Suppose, for the time being, we have the following estimates

B[ s (o) — 2% + o) —0%) | < Catm). (a1)
Bl s ot —solk] <o 0 [CEhenas @

where
V(s) = sup. lz(1) —y(DI% (33)

and n(w) is independent of k and satisfies
n(r) < Cn7P2

(Note, for example, that (mesh 7)P/2 is a term of the form 7(x).) From (30),
(31), (32) and (33) we may deduce that for all r € [0, 7] :

Ely(r)] = E| sup |a(t) - y(t)gg} < On(m) + C/OTE[V(S)} ds.

otLr
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An application of Gronwall’s Lemma implies that
E[y(T)] < Cn(r)exp(CT),

i.e.

| sup [o(0) - y(0%] < Cnrr2

0<t<T

To complete the proof of Theorem 3 we need to prove the estimates (31) and
(32). We begin with (31).

Lemma 2. With the above notation,

IE[ sup (\x(t) —x(ti)x + ly(te) — y(ﬁ)ﬁ,})] < C (mesh )P/, (34)

0<t<r

Proof. Note first that from (18) and the boundedness of the maps g and tr(g’g)
we have

P

J

It then follows using the Burkholder inequality and the boundedness of g that

IE[ sup |z(t) — a:(tk)g(} < C (meshm)? + C]E[ sup

0<t<r 0<t<r

[ ot aus)

tr

]E{ sup |z(t) — aj(tk)ﬁ;(} < OTP/?(mesh )P/,

0<t<r

Recall Taylor’s formula in integral form, see [15]:

1
y(a) —y(b) = /0 v (b+7r(a—10b))(a—0b)dr. (35)
For some 0 < s < 1, we have, using (35), (24) and the boundedness of g,

ly(t) — y(te) %

ly(te + 5 Agt) — y(tr)|%

= /0 Y (te + (s Agt))(s Agt) dr

p

X
p

= / Y (te + 7 Agt)(Agt) dr
0

X
p

= /S 9(y(te + r Agt))(Agw) dr
0 X

< ClAgwl,. (36)

Using (5) we infer that

B[ sup () - y(el%] < C meshy2

0<t<r

This completes the proof of Lemma 2. O
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Fix an interval [t;,¢;41] in the partition 7. We quote another form of
Taylor’s formula, see [15]:

1
y(a) —y(b) = y'(b)(a — b) + /0 (1—35)y"(b+s(a—b))(a—ba—b)ds. (37)
Using (37), the chain rule and (24) we obtain
1
y(tiv1) —y(ti) = y'(t;) At + /0 (1= 5)y"(t; + s A;t)(Ajt, Ajt) ds
= gluy) Ajut [ (=) (9wt + 5 850) 9 vty +5 850)) Ay, Agw)) ds
0

It then follows, denoting s; :=t; + s A;t, that

k—1
y(tk) —y(0) = > (Yj+1 — y5)
3=0
k—1
=3 (o) Ay + 5 9055 90) (B, Ayw)

=0
k—1 1

+ Z/O (1=5) 9" (u(s5)) 9(y(s)) (Ajw, Ajw) ds
7=0
k—1

/011_5 ) 9(05) (Dgw, Agw) ds

Recalling that

z(tr) = z(0) +/0 ' g(a?(s)) dw(s) + %/0 ' tr [g’(a:(s)) g(a:(s))] ds,
we may write
1— 1 1
y(tk)—x(tk) :Ak+Bk+§Ck+Dk+§Ek+§Fk,

where

>
|
—

Ay

/0 (1-5s) (9/(21(83')) g(y(sy)) — 9/(yj)9(yj)) (Ajw, Ajw)ds

IR
I
= o

L
I
]

(9(y;) — g(z5)) Ajw

I
I
=

Ql
=
|

(gl(yj) 9(y;) — g’ (x5) g(25)) (A w, Ajw)

<
Il
o
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k—1

Dy = ;gm) Ajw - / o((s)) du(s)
k—1

B = (g (x) glx) (Ajw, Ajw) — trlg (z;) g(x;)] Ajt)

k-1 b
F, = Ztr[g’(a:j)g(a:j)] At — /0 tr [g’(x(t)) g(m(t))] dt.

We begin with proving:

Lemma 3. Using the above notation we have

]E{ sup |Ax + Di + Ex + Fkgc} < C’(meshﬂ')”/Q.
1<k<R(n)

Proof. Consider first the term Ay, = Zf;é I';, where

265

1
Iy = [ =) (9 050) 90l (B Ay = 9'(05) 90 (A0 Ajw)) s,
0

The boundedness and Lipschitz properties of ¢’ and g, along with (36), imply

that
I5lx < / 1‘ (9 (0(5) = 9'0)) 9w(s)) (A, By0)| s
’ 1
+/0 ’9/(313')(9(1/(83')) —g(yj))(Ajw,Ajw)‘de

ClAjwl y(si) = yilx

<
S C|A]w‘%

Using (38) and Holder’s inequality for sums we have

N(n)—1
> Ajw|?g)]'

]E{ sup |Ak|§<] <CN(n)P'E
§=0

1<k N (n)

Applying (5) (with p replaced by 3p) gives us

N(n)—1

IE[ sup |Ak|§(]<CN(n)p1 Z |At)3P/2,
1<k N (n) =

It then follows, using (22) and (23), that

IE[ sup |Ak|§(} < CnP~Hmesh 7)%"/2n < C(mesh 7)P/2.
1<k< N (n)

(38)

(39)
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Consider then the term Dy, = Z] 0 Y g(zy) Ajw — fo x(s)) dw(s). Define
~ g(xj) fort; < s <tjyi,
9(s) =
0 if s > tg.

g(s) is well-defined, adapted to the filtration {%} ., and moreover, the inte-
gral fo s) dw(s) makes sense for all t € [0,T]. We may write

D= [ (365 o(o16)) du(s)

Using the Burkholder inequality, the Lipschitz property of g and the properties

(22) and (23), it follows that
[ (@t - stete) auto) |

([ 156~ ot oy as) |

[ /RM)-1 ) “
=CE ( Z /t |9($j)_9($(3))|L(E7X)dS> ]
L\ j=0 7t
R(n)—1

I tit1 p/2
< CE < Z / lz; — x(s)|% ds) 1
L\ =y

J

]E{ sup Dkg(] QE{ sup
1<k<R(n) 0<t<r

< CE

< CE _ sup |z(t;) — l’(t)g(}

Lo<t<r
where [ is such that ¢ € [¢;,t;41). Using Lemma 2 we deduce that
]E{ sup  |Dpl% ] C(mesh 7)P/2, (40)
1<k<R(n)
Consider next the term Fj,. We have

tit1

Bl = (1l a5) 9050~ g (a(0) (0] )

X
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Using the boundedness and the Lipschitz properties of functions ¢ and ¢’, we
deduce that

J+1
|Fk\X\CZ/ ()] dt

< CT sup |z(t;) — =(t)|x,
o<tgr

where [ is such that t € [t;,t;41). Again, using Lemma 2, we conclude that

]E{ sup Fk|§(]<0(mesh7r)p/2. (41)
1<k<R(n)

Finally, we deal with the term FEj and we will prove

]E{ sup Ek|p] C(mesh m)P/2, (42)
1<k<R(n)

This part of the proof differs considerably from [23]. Dowell proves (42) using
the properties of the inner product on a Hilbert space and the proof is quite
straightforward. We do not have an inner product to work with and instead
we make use of the M-type 2 property of our space X. Let E = Zf;é A,
where

Ay = g'(x5) g(2;)(Ajw, Ajw) — tr(g' (x) g(;)) Ajt (43)

We first show that Fj is an X-valued martingale with respect to the discrete
filtration {F, }1<k<r(n). For 0 < j <k —1, z; : 2 — X is F;;-measurable
and w(tjy1) — w(t;) : £2 — E is F,,,-measurable. Using the continuity of
the maps g, ¢’ and tr(g’g) it follows that each A; is F;,, -measurable. We
deduce that Ej is F;,-measurable. To prove L is a martingale we are left
with showing that E[Ey | Fy, ,] = Ek—1. For this it suffices to prove that
E[Ag—1|Fs,_,] = 0.
Denote
Vi1 := g (xr—1) g(zp—1) (Ap—1w, Ap_qw).

Then
EWi—1 | Fr-1] = El¢' (xr—1) g(@—1)(Ap—1w, Ap_rw) | Fy, ]
= g'(zr-1) 9(zx—1)E[(Ap—1w, Ap_1w)]
= (e~ i) [ o) glonr)(ee) due)
E

= (Ap_1t) tr(g' (zh—1) g(zr-1))
= E[(Ax-1) tr(g' (wr-1) g(wr-1)) | Frr_y]- (44)

As x4 is F, _,-measurable, then so is tr(¢’(zx—1) g(xk—1)), which explains
the final step. Thus (43) and (44) imply that E[Ax_1 | Fi,_,] = 0. We conclude
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that {Er},_ (n) is an X-valued martingale with respect to the discrete filtration
{ftk}1<k<R . Since X is an M-type 2 Banach space it follows that, see (1),

R(n)—1 p/2
(Z IEj—Ej1|§<> ]

]E{ sup Ek%} < CE
1<k<R(n)

j=1
Thus
R(n) p/2
sup < CE A3 .
[ S ] <os|(Znon

Applying the Holder 1nequahty for sums gives

k—1 D R(n)
]E{ sup A; } < CR()P*'E Z |Aj_1§(1
1SkSR(n)1 20 j=1
<SONMPP S B[40 (45)
j=1
Note that

E[4;%] < E[(|g'(@) 9(a) (Agw, )] + (g (25) 9(2) (A1) ) |
CE[|Ajw|?? + |Ajt]P]

<
< Ot (46)

It follows from (45) and (46) that

IE[ sup Ekg(} < CN(n)P/?71 Z(A t)P
1<k<R(n) o

N(n)
n)P/21 Z (mesh )P
j=1

< ON(n)P?(mesh )P < C(mesh)P/2.  (47)
Lemma 3 now follows from (39), (40), (41) and (47). a

Lemma 4. For a constant C independent of k and r,

]E{ sup |Bk+6k|§] <C / E[v(s)]ds (48)
1<k<R(n) 0

Proof. As in the proof of Lemma 3, define

g(y;) —g(z;) ift; <s<tjpr, where 0 < j<k—1,
Y(s) =
0 if s > ty.
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Y(s) is well-defined, adapted to the filtration {%} ., and fo s) dw(s)
makes sense for all ¢ € [0,T]. Moreover,

itk =| [ o) auts)

Using the Burkholder inequality and the Lipschitz properties of g, it follows

that
t P
]E{ sup Bk|§(]:E{sup /Y(s)dw(s) ]
1<k<R(n) o<t<r|Jo X
r T ) p/2
<ce|([ WOREnds) |
/R 4 p/2
=CE ( Z / 9(y;5) (xj)QL(E,X)dS> ]

r /R(n)—1 p/2
< CE ( > yj—l”jg(ﬁjt> ]

p
X

j=0
r /R(n)—1 P/2
< CE ( > v(tj)z/ijt> ]
L\ j=0
Applying the Holder inequality for sums gives
R(n)—1
]E{ sup Bk|§(] < CR()P/*'E Z y(t;)(Ast)P/?
1<k<R(n) o
R(n)—1
< ON(n)?/*7*(mesh 7)P/2~1 E[y
7=0

<c / "Efy(s)] ds,

which constitutes the first in proving Lemma 4. Consider the final term C,.
Then

k—1
Tl = > (¢ w)w) —g'(xj>g<xj>)<Ajw,Ajw>\
=0 X
k—1
< (16 w3) = () () (A, Agw)]
§=0

o (3) (9(05) — 9()) (A0, Agw) )
k—1

<OY s —yjlx 18wl

Jj=0
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Applying the Holder inequality gives

k—1
Ckl” <CNmP D fay — wl% 1A jw]F
=0

On taking supremum over k£ and then expectations we get

R(n)—1
]E{ sup |Ck|?(:| < CN(n)P~! Z ]EUIJ —yj\g(\Ajwap].
1<k<R(n) §=0

Since both xz; and y; are F; ,-measurable and Aj;w is independent of 7, then
using the properties of conditional expectation and (5) we have

Ellz; — yl%1AuwE ] = E[]E[\l’j — i % 18wl | 7'_tjﬂ
= E[je; — yl% B[l Al | )]

= E{\fﬂj —yil% ]E[\Ajwﬁ;p]}
< ClAGHPE[|2; — 515 ] (49)

It then follows using (49), (22) and (23) that

R(n) 1
E| sup ﬁkp]\ Ex-—y-p Ajt|P
|:1<k<R(n)‘ [x ; ;= 515 ] 1At]
R(n)—1
< CN(n)P~(mesh )P~} (Ajt)]E{ sup |z(r) — y(r)|%
j=0 0Tty

R(n)—1

<C Z E[(v(t;) Ajt].

Since ~y(s) is non-decreasing we can conclude that

[ sup ‘Ck’X] C’/
1<k<R(n

which concludes the proof of Lemma 4. The proof of Theorem 3 is now com-
plete. a

Remark 12. In a very recent preprint [32] by M. Ledoux, T. Lyons and Z.Qian,
the authors extend the main results of [33] to a wide class of Banach spaces.
The finite dimensional case of the rough path theory, see [33], gives deep under-
standing of what approximation procedure leads to Stratonovitch stochastic
differential equations. The infinite dimensional case discussed in the above
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cited preprint should give greater understanding of Corollary 2. On the other
hand, our results could be used to show that the rough path theory agrees
with classical theory of stochastic differential equations in M-type 2 Banach
spaces. One can point out a difference concerning regularity assumptions be-
tween our paper and [33], [32]. While we assume that the coefficient g is of
C?-class (i.e., g’ is Lipschitz), the assumption in the above two papers is that
g is of C?*¢-class for some ¢ > 0 depending on the roughness of the driving
rough path.

In another recent work [19] the author employs the Euler method to prove
local existence of solutions to differential equations in finite dimensional spaces
driven by a finite dimensional rough path. It would be interesting to extend his
result to an infinite dimensional case and to also consider the global existence
of solutions when the input is a p-rough path with p > 2. Such results would
help to give a better understanding of the relationship between our paper and
the T. Lyons theory, in particular with the above mentioned preprint [32].
The authors would like to thank the anonymous referee for informing them
about the interesting paper by A.M. Davie [19].

3 Approximation of SDEs whose coefficients are locally
Lipschitz

In this section we improve the result given as Corollary 1. We no longer assume
that the maps f and g satisfy a global Lipschitz condition nor that they are
bounded. We assume the following conditions hold true.

(A2) f:X — X is a C'-map which is Lipschitz on balls.

(B2) g: X — L(E, X) is a C! map such that the maps g and g’ are Lipschitz
on balls.

(C2) The functions f, g and tr(g’g) are of linear growth.

We should point out here that if the condition (B2) is satisfied, the map
tr(g’g) : X — X is also Lipschitz on balls. We would like also to stress that
we have imposed the condition (C2) in order to ensure that there exists a
global solution to the problems (50) and (51) below.

In addition to the assumption that X is an M-type 2 Banach space, we
assume also the following.

(D2) There exists a C'-class bump function ¢ : X — R such that

1 if o]y < 1,
¢(x) = :
0 if|z|x > 2,

0 < ¢(x) < 1for z € X, and the first derivative of ¢, ¢', is Lipschitz
and bounded.
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Remark 13. Concerning the assumptions on X, it would suffice, for example,
to assume that for some p > 2, X satisfies the following condition:

(H,) The function ¢, : X — R given by ¢, (z) = |z|% is of C? class and there
exists constants ki, ko > 0 such that [¢,(z)] < k1|x|§{1 and [¢) (z)] <
keo| |2, for z € X.

It is straightforward to show the existence of the bump function ¢ if (H,)

holds. Secondly, any Banach space satisfying (H,) is of M-type 2, see [13].

It is worthwhile noticing that for any ¢ > p the Lebesgue spaces L? and
the Sobolev—Slobodetskii spaces W4 (see Section 4), satisfy (H,), see [21].

Fix T > 0, p > 2 and z € LP(£2, X). For a partition 7 of [0, T] let
2:[0,T]x 2 — X and = : [0,T] x 2 — X be the respective solutions to the
problems

{dx(t) = f(z(t)) dt + g(x(t)) o dw(t), >0, (50)
z(0) = xo.
and
{du(t) = f(za(t)) dt + g(2x () dwn(t),  t>0, 51)
2:(0) = xo.

The assumptions on f and g are sufficient to guarantee the existence of the
solutions = and x,, see Theorem 2. Note also that z is continuous, i.e.,

P{we 2:z2(w) e C0,T;X)} =1. (52)

For each n € N let 7, be a partition of [0,7] as described in the previous
section. In particular, we assume that the conditions (22-23) are satisfied.

Theorem 4. With the above assumptions and notation, for each 6 > 0

]P’{w cosup |z(t,w) — xq, (tw)|x > 6} —0 as meshm, — 0, (53)
0<t<T

i€, Tr, () —x(.) in C(0,T;X) in probability.

Remark 14. The extension of Corollary 1 to Theorem 4 is important as it
allows us to apply this approximation result to a class of diffusion processes
on loops, see Section 4.

Proof. The proof we give is analogous to a proof given in [25] (see Theorem
10, page 153). Throughout the proof we denote the norm on X by |.| and the
norm on C(0,T; X) by |. |- For R € N set

Br:={y€C(0,T;X) : |7]c < R}.

(52) implies that
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1= P{w €:z(w)e U BR} = Rlim P{w € 2 : z(w) € Br}. (54)
ReEN >

Set 2 := {w € 2 : z(w) € Br}. Let € > 0 be given. (54) implies that we
may choose R € N so large that

P(2%) = 1 — P(25) < % . (55)
Henceforth we keep R fixed such that (55) holds. Let
zo(w) if [zo(w)lx S R+1,
w5 (w) = . (56)
0 if |zo(w)|x > R+ 1.

Lemma 5. For any R > 0 there exists C'-class maps fr : X — X and
gr: X — L(E, X) such that:

(i) fr, gr and gp are globally Lipschitz and bounded;
(ii) fr and gr coincide with f and g on the closed ball B(O,R+1) C X.

Proof. Fix R > 0 and define ¢p : X — R by

on(@)=0(z)  TEX,

where ¢ : X — R is the bump function described earlier. It is clear that ¢g
is C-class, Lipschitz and bounded. ¢ satisfies

1 if |y SR+ 1,
¢r(r) = .
0 if|z|x > 2R+ 2,

and 0 < ¢g < 1. Furthermore ¢, is Lipschitz and bounded.
Define fr: X — X and gr: X — L(E, X) by

fr(@) =¢r(x)f(x),  gr(z)=9¢r(z)g(z), z€X.

It is not difficult to see that fr and gr are C L_maps which coincide with f and
g respectively on the closed ball B(0, R+1). We are thus left with proving (i).
Note the following two facts:

a) Ifv: X - Rand ¢g: X — X are Lipschitz and bounded, then so is vg.

b) If g : X — X is Lipschitz and bounded on the closed ball B(0,2R+2) C
X, then ¢Rrg is Lipschitz and bounded. Indeed, by Appendix, there exists a
Lipschitz and bounded function §: X — X such that § = g on B(0,2R + 2).
By a), ¢rg is Lipschitz and bounded. The equality ¢rg = ¢rg concludes the
proof.
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The point b) implies that fr = ¢rf and gr = ¢rg are Lipschitz and bounded.
For the same reasons the maps ¢,g and ¢rg’ are also Lipschitz and bounded.
Thus, since

9r = $r9 + OrY,
it follows that ¢} is Lipschitz and bounded. This completes the proof of
Lemma 5. O

Denote by z(t), t € [0, 77, the unique solution to the problem

{da:R(t) = fr(zf(t)) dt + gr(z%(t)) o dw(t), >0,

R(0) = o, (57)

where fgr and ggr are the maps from Lemma 5. (Of course, the solution x%

exists by Theorem 2.)
Remark 15. Note that if w € 2p then z(.,w) € Bg, i.e.,

|2(.,w)leo = sup |z(t,w)| < R.
0<t<T

As f = fr and g = gg on B(0, R+ 1), then by uniqueness of the solutions to
the problems (50) and (57), z(t,w) = 2% (¢,w) for all t € [0, 7. It follows that

R(.,a})’C>O = sup ‘zR(t,w)‘ < R.

E
0<t<T

For a partition m, of the interval 0,77, let 2 :[0,7] x 2 — X be the
solution to

deg (t) = fr(zg, (1) dt + gr(a7 (1) dwr, (), ¢
B (0) =zl

Tn

WV

(58)

Take § > 0 such that 0 < § < 1. The maps fr and gg satisfy the assumptions
of Theorem 3 and so we may apply Corollary 1. In particular, there exists
N: € N such that Vn > N;

P{wEQ:’xR(.7w)—x§n(.,w)’m>5}<g. (59)

For n > N; set 2,5 :={w e 2:]2f(.,w) — 2 (.,w)| > 6}
Lemma 6. If w € (24U 2,5)°, n > N, then
2B (L w) =2, (. ,w) on [0,T]. (60)

Tn

Proof. Let w € (2%, U £2,5)¢ = 2rN qu;. As w € 2g then, see Remark 15,

|:1cR(.,cu)|Oo < R.
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Furthermore, if w € 25 5 then |27(.,w) — 2F (., w)|s <& < 1 and hence
|xfn(.7w)|oo <1+ |a:R(_,w)|OO <1+R,
ie., zﬁn( .,w) € Bgry1. Following the arguments in Remark 15, the uniqueness

of the solutions to the problems (51) and (58) implies

2B (L w) =, (. ,w) on [0,T]. O

Tn

If we (24U 2,5)¢, n > N., then by Lemma 6
|z(.,w) —2r, (., w)|oo = |xR(.7w) —xfﬂ(.,w)|oo <.
It follows that
{lwe 2:z(.,w) =25, (. ,wW)|eo >0} T NGFU 25,

which implies that
P{lwe 2:|z(.,w) —2x, (., w)|oo >0} S P2 U 82, 5) < P(2F) + P(82,,.5).
(55) and (59) now imply that for n > N,

P{lwe 2:|z(.,w) —xx, (., w)|eo >} <e. (61)

We have proved that (61) holds for 0 < ¢ < 1. Clearly (61) then also holds for
any 0 > 0, i.e, o, (.) — z(.) in C(0,T; X) in probability. This completes
the proof of Theorem 4. O

Remark 16. As it should be clear from the presented proof the condition (C2)
can be replaced by a weaker one:

(C3) The problem (50) has a unique X-valued solution and for each partition
7 of the interval [0, 7], for each w € (2, the problem (51) has a unique
X-valued solution.

This condition, used as well in [25], will prove useful in Section 5.
Next, we will show the following result on the ‘transfer principle’.

Theorem 5. Suppose X is an M-type 2 Banach space satisfying (D2), E is
a Banach space and w(t), t > 0, is an E-valued Wiener process on some
filtered probability space A = (2, F, (Ft)i=0,P). Suppose that M is a closed
submanifold of the Banach space X . Suppose that in addition to the conditions
(A2), (B2) and (C3) the following condition is satisfied

(M3) For each x € M, f(z) € Ty M and range g(z) C Ty M.
If g € M, then the solution x to (50) takes values in M, a.s.
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Proof. Let us fix T > 0. It follows from (53) that for some subsequence of the
sequence T,, still denoted by 7, to avoid too complicated notation, one has
supgci<r [(t) — Tx, (t)|x — 0 a.s. On the other hand, from classical analysis
it is known (due to (M3)), that the solution =, (¢) takes values in M for all
t € [0,T]. Therefore, as M is closed, the result follows. g

We conclude this section with the following result on approximation when
the solutions may blow up. However, we do not study as in [10] the case when
all the coeflicients are locally Lipschitz in a weak sense but assume that the
conditions (A2) and (B2) hold true. What we do not assume is (C2) and (C3).
The result we present can be seen as a generalization of Theorem VII.10 from
Elworthy’s book [25] from a Hilbert setting to a Banach one. Yet, it is a weaker
result because our coefficients are Lipschitz on balls. A technical reason for
this drawback of our result lies in the fact that we do not know if a Lipschitz
map from a subset of a Banach space has a Lipschitz extension to the whole
space (possibly with a bigger Lipschitz constant), see also Remark 24.

Theorem 6. Suppose X is a Banach space satisfying (D2), E is a Banach
space and w(t), t > 0, is an E-valued Wiener process on some filtered prob-
ability space A = (2, F, (Ft)i>0,P). Suppose finally that the conditions (A2)
and (B2) hold true. Let z(t), 0 < t < 7 be the mazximal solution to (50) and
let zn, (t), 0 <t < 7, be a family of the mazimal solutions to the family of
ordinary differential equations (51). Then x,, converges to x in measure in
the sense that for each t > 0 and each 6 > 0,

P{w € (1) : sup |z(s,w) — g, (s,w)|x > 6} —0 asm — 0o, (62)
0<s<t

where 2,(1) ={w € 2:t < 7(w)}. In particular, t AT, — t in measure on

2 as n — oo.

Proof. Our argument is principally a modification of the proof of Theorem
VII.10 from [25]. Let us fix € > 0 and ¢ > 0. As in the proof of Theorem 4 we
can find R > 0 and a measurable subset {2r of £2,(7) such that

z(s,w) € Bgr, for (s,w) €[0,t] X 2g, and P(02%) < (63)

N M

Then we define the initial condition 2 by (56) and using Lemma 5 find C!-
class functions fr : X — X and gr : X — L(E, X) satisfying the conditions
(i) and (ii) of that Lemma. Next we denote by zr the global solution to the
problem (57). As in Remark 15 we infer that by the uniqueness of solutions,
SUPg< oy [27(t,w)| < R, for w € £2(7). Next, for n € N, let 2 :[0,T]x 2 —
X be the solution to (58). Take next ¢ € (0,1). From Corollary 1 we infer
that there exists N. € N such that Vn > N, the inequality (59) holds true.
For n > N. set 2,,54(7) := {w € £2(7) : supg oy |27 (s, w) — 2 (s,w)| > 6}
Then, arguing as in the proof of Lemma 6 we have that if w € 2g \ 2,,,5.+(7)
then
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2f (L w) =2, (.,w) on [0,¢]. (64)
Hence, if w € Qg \ 2,5:(7),
sup |2(s,w) — r, (s,w)| = sup |xR(s,w) - xfn (s,w)| <0
0<s<t 0<s<t

and therefore

{w € (1) : sup |z(s,w) — g, (s,w)| > 5} C NRGU 2 5.4(7).

0<s<t

This, together with (63) and (64) implies that for n > N,

P{w € (7)) : sup |z(s,w) — zx,(s,w)| > 5} <e (65)

0<s<t

what proves the theorem. a

4 Applications to diffusion processes on loop spaces

4.1 Diffusion processes on loop manifolds

In this first subsection we briefly outline recent results of BrzeZniak and
Elworthy concerning the existence of diffusion processes as solutions to
Stratonovitch stochastic differential equations on certain loop manifolds. All
of what we present (unless otherwise stated) can be found in [10].

Let M be a smooth compact riemannian manifold. We imbed M into some
Euclidean space R% and identify M with its image. Let S* denote the unit
circle.

For § € (0,1), p > 1, the Sobolev—Slobodetskii space of loops on R,
Wo%P(S1 R), is defined by

_ P
WoP(S1R) := {u € LP(S', R / / [us1) — u(s2)[? dsy dss < oo}.
51 Js

‘81 _ S2|1+9p

The vector space W?P?(S1 R) is a Banach space with the norm

|u(s1) —u(s2)?
= pd8+/ / dS dS .
0,p / ‘ g1 Jg1 ‘51 _ 82|1+9p 1 2

Furthermore, W%?(S' R) is an M-type 2 Banach space and W%?(S! R) sat-
isfies the condition (H,), see Section 3.

|u

Remark 17. The spaces W%P(S!, R) may be considered as intermediate spaces
lying between LP(S,R) and W1P(S R), where W1?(S1 R) is the space of
loops on R whose first weak derivative lies in LP(S!,R). Indeed, W%P(S R)
may be identified with the real interpolation space

(Lp(Sla R)7 WLP(Sla R))gw

See [14] for more details.
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We say that a loop on R? u : S' — R? belongs to the Sobolev—
Slobodetskii space W??(S', R?) if and only if the coordinate functions u/ :
S1 — R belong to W??(S* R) for j =1,...,d.

Henceforth we choose 6 to lie in the interval (1/p,1/2), p > 2. In particular,
this implies:

(i) the imbedding map W%P?(S* R?) «— C(S',R?) is continuous, where
C(S*,R?) is the space of continuous loops on R%;

(i) i : HY2(SY,RY) — WoP(SY RY) is an AWS, where H12(S1 R?) is the
space of loops on R? whose first weak derivative belongs to L2(S*, R?).

Using the notation from the previous sections we set
X=E=w%(S"RY)  and H=H"2S"R?).

We denote by {w(t)};>0 the corresponding E-valued Wiener process. In view
of (i), the paths of w(t), t > 0, take values in C(S*,R?). In particular, for
each s € St wg(t) .= w(t)(s), t >0, is an R%valued Wiener process.

For z : [0,7] x S* x 2 — M consider the following family (indexed by
s € S1) of Stratonovitch stochastic differential equations on M:

dzs(t) = f(zs(t)) dt + g(xs(t)) o dws(t), (66)

t > 0,s € S! where we write z4(t) := x(t,s) and we have suppressed the
dependence on w € 2. We explain the notation used in (66):

a) fe€C®(M,TM), ie., fis a smooth vector field on M;

b) g € C°(M,L(RY, TM)), i.e., g is a smooth section of a bundle F over
M, whose fibres are F, = L(R% T, M), x € M. (Here TM is the tangent
bundle of M and for x € M, T, M is the tangent space to M at x.)

Instead of considering the above family of SDEs on M, we reformulate (66)
as a single SDE on a certain loop manifold. We define M = W%?(S1 M) by

WOP(SY, M) = {ue WoP(S" RY) : u(s) € M, Vs € S'}.

In view of (i) M is well defined. Moreover, M is a closed submanifold of the
infinite dimensional Banach space W%P(S* R?), see [8]. The tangent space to
M at a point v € M is given by

T»YM = {77 S W97P(517Rd) ’I’](S) € Tn(s)M7 Vs € Sl}

Let ye M, ne€ E=W9%(S1 R?%), s € S'. Given f and g as above, we define
their corresponding Nemytski maps F' and G through the following formulas

F()(s) :== f(v(s)), (67)
G()(n)(s) == g(v(s)) n(s). (68)
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In particular, F' and G are C'°° maps which satisfy
M3 y+— F(y) € TyM,
M3 y+— G(y) € L(E, TyM).
Using the above notation we may rewrite the family of SDEs (66) as
dz(t) = F(2(t)) dt + G(z(t)) o dw(t). (69)

The equation (69) is a SDE on the loop manifold M = W%P(S! M). If the
initial value lies on M then there exists a unique global M-valued solution
to (69), i.e., if 29 € M then for any T > 0, there exists a unique continuous,
progressively measurable M-valued process x such that for each ¢ € [0, 7]

x(t) = z(0) +/0 F(a:(r)) dr +/0 G(a:(r)) o dw(r), a.s.,

with 2(0) = x¢. In particular, z is a diffusion process on the loop manifold M.

Remark 18. The family of M-valued processes {zs(t)}ses1, t € [0,7T], is a
solution to (66), with initial value {zg s}secst-

4.2 An approximation result for solutions to SDEs on M
Fix T > 0 and g € M. Let x : [0,T] x 2 — M be the unique solution to the

problem
{ da(t) = F(z(t)) dt + G(z(t)) o dw(t),

z(0) = a0 (70)

where F' and G are given by (67) and (68) respectively. It is known, see [10]
that the problem (70) has a unique global solution. Moreover, in [12], the
Feller property of solutions is investigated. For each partition = of [0, 7], let
Zr : [0,T] x 2 — M be the solutions to the family of ODEs (indexed by
w e 2)

{dxﬂ(t) = F(2x(1)) dt + G(xx(t)) dwx(t), 71)

27 (0) = xo.

Theorem 7. Suppose T, is a sequence of partitions of the interval [0,T] sat-
isfying the conditions (22-23). Then x,, (.) — z(.) in C(0,T; M) in proba-
bility.

Proof. Let f and g be defined as in the previous subsection. We can extend
f and g smoothly to be defined on the whole of R? so that they are both of
compact support. We denote these extensions f and g respectively. For each
m € M, we identify the tangent space T,,, M with the corresponding subspace
of R?. In particular
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f:R*=RY  and  §:R?— L(RYRY),

and, for m e M,

Given f and § we define their corresponding Nemytski maps Fand G through
the following formulas

F(y)(s) = f(7(s)), (74)
G())(s) = g(())n(s), (75)

where v € X = W9P(S1 RY) n e E = W9P(S1,RY) and s € S'. The maps
F and G are smooth maps which satisfy

ﬁ:X—>X,

G:X — L(E,X).
The maps F , G and tr(é’ C:‘) are Lipschitz continuous on balls and are of linear
growth. (In fact, all the derivatives of F' and G are Lipschitz on balls.) Thus,

see Theorem 2, given g € M C X there exists a unique global X-valued
solution to the problem

{ di(t) = F(2(t)) dt + G(&(t)) o dw(t), 76)

i‘(O) = X0.-

For a partition 7 let &, : [0,T] x £2 — X be the solution to the family of
ODEs, indexed by w € 2,

din (t) = F (22 (1)) dt + G (24 (1)) dwn (1)
(77)
i‘,-r (O) = Zg-
The conditions of Theorem 4 are satisfied and so we deduce that
Er, () — 2() in C(0,T; X) in probability. (78)

However, note that if ¥ € M then for each s € S, v(s) € M and so
F(m)(s) = f(1(s) = F(1() = F()(s),
G)(s) = 4(x(s)) = 9(3(s)) = G()(s)

(see (72), (73) and the definitions of the Nemytski maps, (67), (68), (74) and
(75)). So, if v € M, we have
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F(y)=F(y) and  G(y)=G().

Thus, the M-valued solution to (70) is also the solution to the SDE (76),
provided that we take the same initial value o € M. Hence, by uniqueness
we have that £ = x. A similar argument yields &, = x,, for each n € N. It
follows from this observation and (78) that z., (.) — «(.) in C(0,7; M) in
probability. This completes the proof of Theorem 7. g

Remark 19. The argument above can be also used to give an alternative proof
of existence of solutions to (69). We first prove, as in [10], the existence of
global solutions to (76). Then, noting that due to our construction the coeffi-
cients F' and H satisfy the assumption (M3) of Theorem 5. Applying then the
last result implies that the solution x(t) to (76) takes values in M. Therefore,
as the restrictions of ' and H to M are simply F' and G respectively, we infer
that z(t) is a solution to (69).

Remark 20. If in addition to (66) one considers a family of random ODEs:

{ daTn (t) = f(zT (1)) dt + g(2T(t)) dw(t), t >0,
257 (0) = wo(s),

indexed by s € S, then 2™ — 2 in probability in the following sense. For all
e>0

IP’{ sup  |zs(t) — 2l (t)|ga > E} —0 as mesh 7, — 0.  (79)
s€Stte(0,T]

5 Applications to stochastic flows

Suppose that M is a compact smooth riemannian manifold of dimension m.
P. Baxendale in [2] defined a Diff"(M)-valued, r = 1,2,...,00, Brownian
Motion (BM) and showed that an Diff" (M )-valued BM, r = 3,4, ..., 0o, gen-
erates a Hilbert space H C C""%(TM) and a vector field f € C"3(T M),
where TM denotes the tangent vector bundle on M and C*(T'M) the space
of all sections of TM (i.e., vector fields on M) of class C*. In what follows,
Ck1(T M) will denote the space of all sections of TM of class C* such that the
k-th derivative f(®) is Lipschitz. Converse results were known through works
of Elworthy, see [25] and Kunita [30]. In a recent paper [9] the authors proved
the following. Suppose H C C*Y(TM) is such that the natural imbedding
H — C%Y(TM) is y-radonifying and that f € C"'(T'M). Let H be a vector
bundle over M with a fiber at = to be equal L(H, T, M). Define a section g of
the bundle H by g(z)(h) = h(x). The natural extension of g to C*(T'M) we
will denote also by g. Then, for § € (m/p, 1) there exists a global stochastic
flow of W¥+LP diffeomorphisms of M to the problem (with z € M):
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{ dz(t) = f(2(t)) dt + g(2(t)) o dw(?),

o = 2.

(80)

Here we assume that w(t), t > 0 is the canonical E-valued Wiener pro-
cess defined on some complete filtered probability space (£2, F, (Ft)ieo, 17, P),
where E is some separable Banach space such that H — E C C*1(T M) with
the first imbedding being an AWS.

The construction of a stochastic flow of diffeomorphisms for (80) can be
achieved by lifting the problem (80) to a stochastic differential equation on the
group of diffeomorphisms of M (of appropriate regularity). This has been first
done by Elworthy in a ‘Hilbertian’ framework, see [25], and later developed by
the first author and Elworthy in a ‘Banachian’ framework, see [9]. Here we will
follow the second reference. Let us choose 6 and p > 2 such that m/p < 6 < 1.
Let X be the Sobolev-Slobodetskii space W9+1:P(M,R?), where we assume
that M is imbedded into R? (and so, in particular, f(z) € R? for z € M).
Next, let M be the Banach manifold WO+1P(M, M), see [8] and references
therein for a definition and all basic properties. Finally, let Diff!™?? (M) be
the open set in M consisting of all ¢ € M which are C! diffeomorphisms
of M. With the maps F' and G defined by F : X > u — fou € X and
G:X — L(H,X), Gu)(h) = {M >z g(z)(h) € R}, the equation (80)
lifted to the Banach space X takes the following form

du(t) = F(x(t)) dt + G(u(t)) o dw(t) (81)
Uug = Id7

where Id is the identity map of M. One proves by essentially the same methods
as in [9] the following result

Theorem 8. The problem (81) has a unique X -valued solution u(t), t > 0.
This process takes values in M, and in fact is Diff* %P (M)-valued.

The first part of the Theorem is proven first for the Banach space X =
WoP(M,R%). Then by studying an equation for the derivative flow one can
show that the solution u(t) actually takes values in X. The reason for proving
this part of the Theorem in two steps lies in the fact that while the maps F’
and G are of linear growth in X they are not of linear growth in E. They are
locally Lipschitz in both cases.

The second part of the Theorem follows from invariance of the manifold
M with respect to the problem (81) (in a similar way to [10]). The third part
follows from the second by employing an ergodic type argument due to It
(and used in a similar context by Elworthy in [26]).

As in the previous section we fix a positive T' > 0 and for each partition 7
of the interval [0, 7] we consider a family of ODEs (indexed by w € §2) on M:

{ dz(t) = f(zx(t)) dt + g(zx(t)) dwx(t),

2:(0) =z (82)
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and its lift to X:

dur(t) = F(ux(t)) dt + G(ux(t)) dwx(t) (83)
ur(0) =1Id.

It is a classical result that for each w € {2 the (ordinary) differential
equation (83) has a unique F-valued solution. Moreover this solution takes
values in Diff' P (). Similarly to Theorem (7) (but see also Remark 16) we
have

Theorem 9. Suppose 7, is a sequence of partitions of the interval [0,T] sat-
isfying the conditions (22-23). Then x,, (.) — x(.) in C(0,T; Diff' **?()))
in probability.

Remark 21. The distance in Diff' ™ (M) is the distance inherited from the
distance in X = W1+0.P(M RY).

Remark 22. In a Hilbert manifolds framework Theorem 9 was stated and
proved much earlier by K.D. Elworthy in [24] and [25], Corollary 1C.1 of
chapter VIII. Comparing with [25] our results cover more general driving
processes and, even in the more classical description of Elworthy, we allow
vector fields to be of lower regularity. It is possible to apply Theorem 9 to get
approximation of C'*° flows, compare with Corollary 1C.3 therein.

One should also bring to the attention of the reader that convergence of
stochastic flows was also stated by Malliavin in [36], see Theorem 3.3.2.1 on
p- 91. However, a detailed proof of this result has not been provided by the au-
thor until his monograph [38], where the author works with C*°-vector fields,
see Theorem 6.2 therein. Malliavin proposed there a different approach to the
question of approximation of stochastic flows based on mixture of arguments
and techniques from [37] and [25] and proved tightness of the sequence of
diffeomorphism flows corresponding to the approximated equation. He also
identified the limit as a flow corresponding to the Stratonovitch equation. His
approach seem to be more deterministic when compared to ours.

One should not forget to mention that by partially employing classical
approximation results of Bismut [5], Malliavin and Nualart in [39] have given
a quasi-sure version of this result.

We are grateful to the anonymous referee for pointing these facts out to us.

Ezxample 1. Suppose that M is a compact manifold and f : M — T M is vector
fields on M of Ct' and o : M — TM, j = 1,...,k are a finite number vector
fields on M of C%! class. Define H to be the finite dimensional Hilbert space
spanned by o, 7 =1,...,k with a image norm, i.e.,

k
IRI* =1yl h=) wyjo;,  yeRM
j j=1
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Note, that o1,...,0% is an ONB of H. We use the notation (introduced
earlier) of H and g, i.e., H denotes the vector bundle over M with a fiber
at = equal L(H,T,M) and g is a section of H by g(z)(h) = h(z) =
>-yi0(x), h = Z?Zl y;o;. We consider an R¥ valued Wiener process
w(t) = (w'(t),...,wk(t)), t > 0, defined on some complete filtered proba-
bility space (£2,F, (Ft)icjo,r):P)- Then, with E = H, w(t) := > w’(t)o; is
the E-valued canonical Wiener process.

It can be shown that, for a fixed z € M, a solution the following stochastic
differential equation on M,

{ da(t) = f(z(t)) dt + 5 o(x(t)) o dwi (1),

o =T

(84)

is also a solution to the problem (80) (and vice versa). Thus our results are,
in particular, applicable to standard finite dimensional stochastic differential
equations of the form (84). One should point out that Elworthy’s results from
[25] are also applicable in this situation. However, we allow coefficients of lower
regularity.

Appendix

The aim of this section is to prove the following well known results.

Lemma 7. Let X be a normed vector space with norm by |.|. Define ¢ :
X — X through the formula
e if 2l <1,
P(x) = . (85)
z/|z|  if |z > 1.

Then for all x, y € X

() —¥(y)| < 3l -yl (86)

Corollary 3. Let X and Y be normed vector spaces with norms denoted by
|.|. Suppose that a map g : X — Y is Lipschitz on the closed ball B(0, R),
R > 0, with Lipschitz constant C. Then, there exists a bounded map § :
X — Y such that § = g on B(0,R) and § is Lipschitz on X, with Lipschitz
constant 3C.

Proof of Lemma 7. Let B := B(0,1) = {x € X : |z| < 1}. Clearly, from the
definition of 1, (86) holds for x, y € B. There are two other cases which need
to be considered.

Case 1. Let © ¢ B and y ¢ B. Then
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x oy
9o~ vl = |7 -
alyl = ylal|
R
@ =)yl + (yl — =)y
B |z |y
eyl vl ol

|z] |z|

< El |z -yl (87)

As |z| > 1, then 2/|z| < 2. Thus (86) follows from (87).

2
|z

Remark 23. Note, in particular, that (87) implies

[yl —y |||

Yl
Case 2. Let x € B and y ¢ B. Then

<2lz —yl, z,y € X. (88)

y y y oy
(@) — v(y)| = \x _ < ]x el —\ n \x v —\. (89)
lyl lyl lyl 1yl
Considering the first term on the RHS of (89), then
x_xg‘:wgm_% (90)
|yl lyl

where we have applied (88). Considering now the second term on the RHS of
(89), then

Y Yy
\x r\

lyl ly

<|x|—1>%|]=11—|x|y<\y|—x\<x—y|. (1)

It follows from (89), (90) and (91) that for x € B and y ¢ B we have

[(x) = ¥(y)| < 3lz—yl.
This completes the proof of Lemma 7. O

Proof of Corollary 3. For R > 0 define ¢r : X — X through the formula
T
vr(@)=Ry(5),  zeX,

where ¢ : X — X is given by (85) (see Lemma 7). Then
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bla) x if |2| < R,
B =) 2/l2) i |2| > R.

Clearly, from (86) we have that

() = vy = Bju(E) —v(%)| <3z =yl (92)

Thus 1 is Lipschitz. Note also that 1z (X) C B(0, R).

Set g := gogr. Then, g: X — X is well defined and coincides with g on
the closed ball B(0, R). Since g is Lipschitz, and hence bounded on B(0, R),
and v : X — B(0, R), we infer that § is bounded. Moreover, § is Lipschitz.
Indeed, for z, y € X, the Lipschitz property of g and (92) imply that

19(z) — ()| = g o Yr(z) — goYr(Y)]
< ClYr(z) — ¢r(Y)|
< 3Cz —y|.

This completes the proof of Corollary 3. g

Remark 24. A pair (X,Y) of Banach spaces is said to have the Contraction
Extension Property (CEP) iff for any subset A of X and any Lipschitz map
f A — Y there exists a Lipschitz map f : X — Y such that the restriction of
f to the set A equals f and the Lipschitz constant of f equals to the Lipschitz
constant of f. A space X has the CEP iff the pair (X, X) has it. It is well
known, see Kirszbraun [29], that any pair (X,Y") of Hilbert spaces has the
CEP. It is also known, see Schonbeck [47] (and Theorem 2.11 in [4]) that if
a strictly convex Banach space X has CEP, then it is a Hilbert space. One
should emphasize here, that although the M-type 2 (i.e, 2-uniformly smooth)
Banach spaces are strictly convex (possibly with an equivalent norm), there is
no contradiction between Corollary 3 and the above result of Schénbeck and
Benyamini-Lindenstrauss. Indeed, we prove existence of a Lipschitz extension
with the Lipschitz constant being 3 times the Lipschitz constant of the original
map. Furthermore, our set A is only a ball and we do not know if Corollary
3 holds true for general sets A.
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