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Summary. This article aims to be an introduction to the theory of rough paths, in
which integrals of differential forms against irregular paths and differential equations
controlled by irregular paths are defined. This theory makes use of an extension of
the notion of iterated integrals of the paths, whose algebraic properties appear to
be fundamental. This theory is well-suited for stochastic processes.

1 Introduction

This article is an introduction to the theory of rough paths, which has been
developed by T. Lyons and his co-authors since the early ’90s. The main results
presented here are borrowed from [32, 36]. This theory concerns differential
equations controlled by irregular paths and integration of differential forms
against irregular trajectories. Here, z is a continuous function from [0, 1] to R?,
and the notion of irregularity we use is that of p-variation, as defined by
N. Wiener. This means that for some p > 1,

k

—1
sup § |xti+1 - T,
k21, 0<to<-Ste <1 52

partition of [0,1]

P < +o00.

As we will see, the integer |p| plays an important role in this theory.
In probability theory, most stochastic processes are not of finite variation,
but are of finite p-variation for some p > 2. We show in Sect. 10 how to apply
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this theory to Brownian motion. But the theory of rough paths could be used
for many other types of processes, as presented in Sect. 12.
Firstly, we give a meaning to the integral

t
/ f(zs) das, or equivalently, / f (1.1)
0 z([0,t])
for a differential form .,
flx) =3 fi(z)da’ (1.2)
i=1

We are also interested in solving the controlled differential equation

dy: = f(y:) doy, (1.3)

where f is the vector field

d B
fly) = Zfi(y)£~
i=1 v

This will be done using Picard’s iteration principle, from the result on integra-
tion of one-forms. Using the terminology of controlled differential equations,
z is called a control.

The theory of rough paths also provided some results on the continuity of
the map = — y, where y is given either by (1.1) or (1.3).

The theory of rough paths may be seen as a combination of two families
of results:

(1) Integration of functions of finite g-variation against functions of finite
p-variation with 1/p+ 1/q > 1 as defined by L.C. Young in [52].

(2) Representation of the solutions of (1.3) using iterated integrals of x: this
approach is in fact an algebraic one, much more than an analytical one.

Let us give a short review of these notions.

(1) Young’s integral

Let  and y be two continuous functions respectively 1/p and 1/¢-Holder
continuous with § = 1/p + 1/¢q > 1. Then, Young’s integral f; yrdz, of y
against z is defined as the limit of I, ,(1I) = Zf;ol Y, (24, — ;) when the
mesh of the partition IT = {¢; |s <to < -+ <t <t} of [s, 1] goes to zero (see
for example [12, 52]). It is possible to choose a point ¢; in IT such that

1

9
(Card IT)? Clt =l

(st (1) = Lo (IT\ { £ })| <

for some constant C' that depends only on the Holder norm of # and y. What-
ever the size of the partition IT is, | Is : (IT)| < |ys(z¢ —zs)|+ [t — 5|°¢(6), where
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C0) =251 1/n?. The limit of I (1) as the mesh of IT goes to 0 may be
considered.

One may be tempted to replace y by f(x), where the regularity of f de-
pends on the irregularity of x. But to apply directly the proof of L.C. Young,
one has to assume that f is a-Holder continuous with o > p — 1, which is
too restrictive as soon as p > 2. To bypass this limitation, we construct when
z, € R? the integral E;l:l fst fi(z,) dxl as

k—1 d

i\ ied

]ilm Z(Z fj ;) xt it1 —l‘g )+ Z P) j,l (xti)xti(éir];)

mesh(IT)—0 Pt Zj,
d

glel-1¢. L

ot Y e .,.fgx_ (e, ) ’31)) (1.4)
J Jlp) =1 Jip] J2
with formally
sl ) :/ dad - dalt. (L5)
s<si < Ss1Kt

This expression (1.4) is provided by the Taylor formula on f and the more
is irregular, i.e., the larger p is, the more regular f needs to be.

What makes the previous definition formal is that the “iterated integrals”
of  have to be defined, and there is no general procedure to construct them,
nor are they unique. The terms x® (%) for k = 2,... |p| are limits of
iterated integrals of piecewise smooth approximations of z, but they are sen-
sitive to the way the path x is approximated. Due to this property, the general
principle in the theory of rough paths is:

The integral Z;l:l fst f;(z,) dzl is not driven by x but, if it exists, by
x = (xb0) x200i) o xlpl (i),
formally to (1.5).

Ly =1y corresponding

(2) Formal solutions of differential equations

k (7.17

Assume now that x is smooth, and let x, ) be its iterated integrals de-

fined by (1.5). Given some 1ndeterm1nates Xl7 ..., X? we consider the formal
non-commutative power series:

&([s,t],z) =1+ Z Z XL .. Xiky (l17 k)

k21 (iy,..00)€{ 1,...,d }*

As first proved by K.T. Chen in [6], &([s, ], z) fully characterizes the path z,
and for all s <u <t,

&([s,u], x)P([u, t], z) = D([s, t], x). (1.6)
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This relation between iterated integrals is also used to prove that the limit
in (1.4) exists. If exp is the non-commutative exponential (defined by a power
series), then there exists a formal series ¥([s,t],2) such that &([s,t],z) =
exp(¥([s,t],z)) and

E[’([S,t],l’) :Z Z F(il,...,id)(X17"'7Xd)xs,t( ! g

k>1 (i1,---yi1 ) E{ 1,...,d}k

(X1,..., X% belongs to the Lie algebra generated by the in-
d

where F(i17...,id)
determinates X',..., X i.e., the smallest submodule containing X*,..., X
and closed under the Lie brackets [V, Z] =Y Z — ZY.

If f=(f1,...,fs) and each of the f; is linear, i.e., f;(y) = C;y where C;
is a matrix, then the solution y of (1.3) is equal to

Yr = exp (@([5, t], x))ys,

where U([s, #], z) is equal to ¥([s, ], ) in which X was replaced by the ma-
trix C;. If f is not linear, but is for example a left-invariant vector field on
a Lie group, then a similar relation holds, where X* is replaced by f;, and
the Lie brackets [, -] are replaced by the Lie bracket between vector fields.
Here, the exponential is replaced by the map defining a left-invariant vector
field from a vector in the Lie algebra, i.e., the tangent space at 0 (see for
example [13]).

This result suggests that when one knows x, he can compute its iterated
integrals and then formally solve (1.3) by replacing the indeterminates by f.
In fact, when z is irregular, the solution y of (1.3) will be constructed using
Picard’s iteration principle, i.e., as the limit of the sequence y™ defined by
yptt = yo—|-f(;s f(y™) dz,.. But it corresponds, if (2%)s=0 is a family of piecewise
smooth approximations of x and f is smooth, to

y = lim y” with ¢} = exp(@([ﬂ,t],r‘s))yu

However, in the previous expression, we need all the iterated integrals of x.
Yet, even if z is irregular, there exists a general procedure to compute them
all, assuming we know x defined formally by (1.5). However, different families
of approximations (x%)s- may give rise to different x. Thus, the solution y
of (1.3) given by the theory of rough paths depends also on x and not only
on x, and the general principle stated above is also respected.

Geometric multiplicative functionals

As we have seen, we need to construct an object x corresponding to the
iterated integrals of an irregular path up to a given order |p|. Since x may be
reached as the limit of smooth paths together with its iterated integrals, x may
be seen as an extension by continuity of the function x — &([s, t], ) giving the
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truncated Chen series, where X% --- X is set equal to 0 as soon as k > |p].
This means in particular that, at the limit, we keep the algebraic relation (1.6).
This means that X ; may be seen as a formal non-commutative polynomial (in
the text, we use tensor products, but this is equivalent in the finite-dimensional
setting). Set xg ;=1landxf, = D) X - X iexh(ik) Thus, x4, =

T+xi, 4+ prJ The relation (1.6) becomes
Xot = XguXyr forall 0 < s <u <<l (1.7)

This means that, if x lies above =,

X;t = —|—xu . with x z =2t g (1.8)
Xit: su+xut+xsux111,t7
=+ 1+
Thus for k = 1,...,|p], one can compute x¥, from x » and xfm when these
quantities are known for ¢t =1,... k.

The objects x that could be reached as an extension of the truncated
Chen series 9([s, t], ) and satisfying (1.7) are called geometric multiplicative
functionals.

Our goal is to construct from x new geometric multiplicative functionals z.
For example, the integral [ f(z,)dx, will itself be constructed as a geometric
multiplicative functional. Remark that for z; ; = fst f(z,)dx,, (1.8) is no more
than the Chasles relation.

The machinery we use to construct z is the following: We construct first
an approximation y of z. For example, if x is of finite p-variation with p < 2,
we define y! ; by f(zs)(2z; — x,), which is an approximation of fst f(z,) da,.

The object y is a non-commutative polynomial, but y does not satisfy re-
lation (1.7) in general. Thus, if IT = {¢; |0 < t; < --- <t < 1} is a partition
of [0, 1], we set

Ygt =VYstiYtitirr T Yti_1.t; Yt .t

where ¢ and j are the smallest and the largest integers such that [t;, ;] C [s,t].
At the first level of path, this relation reads

i 1,02 1,
YSt ZX (ys 'EL) +ytz7(t'i)+1 + - +yJ(1)7tJ +y ())
=1

But for y'2, this relation implies all the yt t 41 S an yt t . s fort; eIl

Of course, y' also fails to satisfy (1.7), except if s, u and ¢ belong to II.
But provided one has a relation of the type

Vst — YsuYurl <e(s,u,t)
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for a nice ¢, then one could consider the difference between ygt and ygt\{ ti ¥
for an element ¢; in ITN(s,t). If ¢; is well chosen, and the choice of ¢; is similar
to the one done for the construction of Young’s integral (see above), one could
show that |y;| < C(s,t), for a function C(s,t) that does not depend on the
partition IT. One could then pass to the limit as the mesh of the partition IT
decreases to 0. Of course, it has to be proved that under reasonable conditions,
the limit, which we denote by z, is unique and is a geometric multiplicative
functional. Moreover, the work has to be done iteratively at each level of

iterated integrals. Thus, if z',...,z"* are already constructed, one gains the
fact that (z', ..., z*) satisfies (1.7), and z**! is constructed using the previous
machinery.

Defining the iterated integrals

Since the previoulsy described procedure is general, anybody interested only
in applying this theory could adopt the following point of view:

: o t
|X =(x',... 7XLPJ)|—’|BlaCk box}—»{ either y; = yo + fo f(yr) dx,

or z; = zo + fot f(x,)dx,

f,0f,...,0wf

and focus on x. In the previous section, we have seen how to construct new
geometric multiplicative functionals from x, but we have not said how x is
constructed. We have already said that x may be difficult to construct. The
most natural approach is to choose a piecewise smooth approximation 2° of
and to define xk’t(il“”’i’“) as the limit of

S)
1k ,0 . 71,0
/ dzis dzil°.
ERS /AN RN

For example, consider a d-dimensional Brownian motion B. As its trajectories
are a-Holder continuous for any o < 1/2, they are of finite p-variation for
any p > 2. Hence, applying the theory of rough paths requires knowing the
equivalent of the second-order iterated integrals of the Brownian motion. Let
B°(w) be an approximation of B(w). One knows that the convergence of
I (w) = fsgszgslgt dB!?(w) dB#°(w) depends on the choice of (B%)s=0 (see
[19, Sect. VI-7, p. 392]). Besides, if for example, B%(w) is a piecewise linear
approximation of B(w) sampled along deterministic partitions, then the limit
of I? , is the Stratonovich integral I, ; = fs<82<81<t odB!,odB] and is defined
only as a limit in probability. (Yet some recent works prove that for dyadic
partitions, the convergence may be almost sure. See for example [24]) Another
difficulty when we want to use rough paths is that we need to prove that B’
and I’ converge to B and I in the topology generated by the distance in
p-variation, which is more complicated to use than the uniform norm.
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Trajectories of stochastic processes represent a natural class of irregu-
lar paths for which one may require some integration theory. Thus, the
theory of rough paths provides a pathwise theory of integration, but path-
wise with respect to x, and not to the stochastic process x. So, the dif-
ficulty is to construct the iterated integrals of the trajectories of x. How-
ever, it has to be noted that constructing x may be simpler than construct-
ing stochastic integrals driven by x. For example, for the Brownian mo-
tion, [, co<t odBl odBi = A,,(B',B7) + 3(Bi — B.)(B{ — Bf), where
As (B, B?) is the Lévy area of (B?, B7). This functional A, ,(B*, B’), which
represents the area enclosed between the curve of r € [s,t] — (B¢, Bj) and
its chord, was constructed by Paul Lévy (see for example [29]) before the
construction of It6 or Stratonovich stochastic integrals.

Using the theory of rough paths, one has then to focus on the construction
of x for given trajectories of z. This has some advantages, among which: (i)
It is easier to define an object like fst odz,odx, for a stochastic process than

fst f(z,)odx, or solving dy: = f(y:)oda:. Section 12 contains a list of types
of stochastic processes for which the theory of rough paths may be used, and
then may be directly applied to solve differential equations. Moreover, the
separation of x and f may be advantageous since we also gain knowledge of
the algebraic structure of x: see [37, 47| for an original application to Monte
Carlo methods. (ii) A support theorem is immediate once we have one on x
(see [24] for an application). (iii) Different piecewise smooth approximations
of a stochastic process lead to different stochastic integrals. This is well known
for Brownian motion, but generalizes immediately to different processes for
which the theory of rough paths may be applied. Besides, this theory provides
some explanations on the form of the corrective drift (see Sects. 6.2 and 10.2).
(iv) Once x has been defined on a probability space (2, F,P), then all the
differential equations dy; = f(y;) dz; and the integrals [ f(x;)dz; are defined
on the same set 2y C {2 of full measure, whatever the function f is.

In this article, we assume that the path x takes its values in V = RY,
and that the differential forms or vector fields f take their values in W =
R™. However, V and W could in fact be any Banach space, even of infinite
dimension.

Motivations

This article does not give a full treatment of the theory of rough paths. But
its aim is to give the reader sufficient information about this theory to help
him to have a general view of it, and maybe to apply it. The reader who is
interested in this theory can read either [32] or [36] to go further.

The theory of rough paths is suitable for trajectories of stochastic pro-
cesses, since there are many types of stochastic processes for which it is possi-
ble to construct their “iterated integrals”. Yet each application to a particular
type of probabilistic problem may require a specific approach. As randomness
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plays no role in this theory, probability theory takes only a small place in this
article. The reader is refered to Sect. 12 and to the bibliography for applica-
tions to stochastic analysis.

Outline of the article

For the sake of clarity, we explain in Sect. 2 how to integrate a differential
form along a path of finite p-variation with p € [1,2), and then how to solve
a differential equation controlled by such a path. In Sect. 3, we deal with
paths of finite p-variation with p € [2,3). This is the most common case a
probabilist could use. Besides, we think that understanding the situation in
this case together with the proofs of Sect. 2 allows us to fully understand the
general theory.

Sections 4 and 5 are devoted to introducing the basic algebraic results
on iterated integrals. Section 6 gives the general definition of geometric mul-
tiplicative functionals, i.e., the objects x previously introduced, and some
convergence results on them. The notion of almost multiplicative functional,
which is the basic element to define an integral, is presented in Sect. 7. The
general results on integration of one-forms and controlled differential equa-
tions are given in Sects. 8 and 9 without proof.

A practical example is presented in Sects. 10 and 11, where the theory is
applied to the Brownian motion. Section 11 also contains a method to compute
the p-variation of a multiplicative functional.

Finally, Sect. 12 contains a list, which attempts to be as complete as
possible at the date of writing, of bibliographic references on works using
the theory of rough paths. This article ends with some bibliographical and
historical notes.

Note.

At first reading, the reader may go directly from the end of Sect. 3 to Sect. 10
for an application to the Brownian motion.
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2 The case of a not so irregular control

Set AT = {(s,t) € [0,1]?]0 < s <t < 1}. Through all this article, we use a
function w from AT to R, satisfying the following assumption.

Assumption 2.1. The function w : AT — R, is such that

(i) The function w is bounded.
(ii) The function w is continuous near the diagonal, i.e., on{ (s,s)|s € [0,1] },
and w(s,s) =0 for all s € [0,1].
(iii) For all 0 < s<u <t <1,

w(s,u) + w(u,t) <w(s,t). (2.1)
If follows immediately that for all § > 1, w? is also super-additive:
w(s,u)? +wu,t)? <w(s,t)? forall s <u<t < 1.

Moreover, it is easily seen that for all €, there exists some 1 small enough
such that [t — s| <n implies that w(s,t) < ¢ for all (s,t) € AT.

2.1 Integration of a differential form along an irregular path

In this section we show that, provided one controls the value of |z; — z4|P for
p € (1,2), then fo (zs) dzs may be defined with Riemann sums.

Assumptlon 2.2. There exists a real 1 < p < 2 such that
|z: — 257 < w(s,t) for all (s,t) € AT (2.2)

for a function w satisfying Assumption 2.1. For example, this is true if x is
1/p-Holder continuous, in which case, w(s,t) = C|t — s| for some constant C.

The differential form f defined by (1.2) is identified with (f1,..., fqa) :
R? — (R™)4. The function f is bounded and a-Hélder continuous, with o >
p—1.

Note that (2.2) together with (2.1) exactly means that z is of finite p-
variation for some p € [1,2).

Of course, (1.1) will be defined as limit of Riemann sums. In order to do
so, set, forall 0 < s <t <1,

Yst = f(xs)(xt - xs)- (23)

For all § > 0, let IT° be a family of partitions 0 < t‘f <o <K tié < 1of [0,1]
whose meshes decrease to 0 as § decreases to 0. Assume that for all 0 < ¢’ < 6,
o cm.

For all § > 0, set

-1

= Yous T Y "‘Zyt“ 0
i=j

where j and ¢ are such that I7° N {t .. }
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Proposition 2.1. Under Assumption 2.2, zgf admits a limit denoted by zs+
for all 0 < s < t < 1. Furthermore, (s,t) € AT — z44 is continuous, and
Zsu + Zut = 25t (Chasles’” relation) for all 0 < s <u<t<1.

Finally, there exists some constant K depending only on f, p and w(0,1)
such that |zs 4P < Kw(s,t) for all (s,t) € AT. This implies that z has finite
p-variation.

Thus, one may define f; f(z,)dz, to be zs 4. The proof relies on the fol-
lowing Lemmas.

Lemma 2.1. There exists a constant C' depending only on f such that for all
0<s<u<t<l,

1+«

[Ys.t — Ysiu — Yut| < Cw(s,t)?, with 6 = > 1. (2.4)

Proof. Since f is Holder continuous and x satisfies (2.1), it is easily established
that, for C' = sup,_, If(z) = f(y)l/|x —y|*,

‘ys,t — Ys,u — yU,t| < |f(wo) = f(ms)l|ze — 2ol < Clay — 25| * |2 — 24
< Cw(s,u)o‘/pw(u,t)l/p < Cw(&t)(l-&-a)/p.
Hence (2.4) is proved. O

Lemma 2.2. Let 0 < s <t <1, and let s <t1 < ... <t <t be a partition
of (s,t). Then, if k > 2, there exists an integer £ in {1,2,...,k} such that

w(s,t),

El ]

w(te—1,te41) <

with the convention that to = s and tgy1 =t.

Proof. The result is clear if k = 2, since w(ty,t2) < w(s,t). Assume that k > 3.
As w is super-additive, Zle w(ti—1,tiy1) < 2w(s,t). So, at least one of the
w(ti—1,ti+1)’s is smaller than 2w(s,t)/k. a

Proof (Proof of Proposition 2.1). Fix 6 > 0 and 0 < s < t < 1. We have
IO (s, t) = {t5,..., ) }.

If I7° N (s,t) = @, then zfté = Y342, where the integer i is such that
[Svt] C [t?7t?+1]'

If IT° N (s, t) contains at least one point, then we choose an integer k such
that 7 < k </, and we construct a new partition

I={t, 8 g, 1)}

by suppressing the point ti. We use the convention that t§—1 = s and t‘g =t
According to Lemma 2.2, the point ti is chosen so that
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(t trr1) < 2 (s,t)
w(tr_ w(s,t).
E—1,Tk+1) S 10501 (s,0)] ,
Thus, using the previous notations,
e n
zsvt = stt + yti—lvti + ytivtiJrl o yti—lvti+l.

With Lemma 2.1,

0
s 2
|2 = 2] < Cw(ter, tii)’ < C(m) w(s,t)’

for a constant C' which is equal to the Holder norm of f.
Suppressing a carefully chosen point in I, and reiterating the process, one
easily obtains that
8
|Z£t — ys7t| < Kw(s,t)e +

Yst — Y ) (25)

5 5
Lisyti (8)

where K = C +2°C >t 1/nf, and i and i’ are such that [tf(é),tf,(é)} is the
smallest interval containing [s,t]. In particular, tf( 5) increases to s and tf, @)
decreases to t as § decreases to 0.

Let 0 <s<u<t<1 Set II°N(s,u) = {t?,...,ti} and I7° N [u,t) =
{t,...,t) }. So,

g m _ i
Zsu + Zu,t - Zs,t - yti,t?, - yti,u - yu,t?, : (26)

As f is bounded, |y, .| < ||f]l w(r,r")1/P 0. Moreover, t —

|7’ —r|—0 —0

u and t?, —— u. Set Z) = ng. With (2.6), the inequality |y,,| <

£l w(r,7")}/P and the continuity of w near its diagonal, it is easily proved
that (Z%)ss0 satisfies the conditions of the Ascoli theorem, i.e., for any x > 0,
there exists some 1 > 0 such that supj,_, ., |Z? — Z9| < k. Thus, there ex-
ists a subsequence of (Z?)s~¢ which converges uniformly to some continuous
function Z on [0, 1].

One could set zs,; = Z; — Zs. Again with (2.6), zfté = z(lff - z(lfs& +
(yti’ti+l —Ypp s — ys,ti“)7 where ¢} and ¢}, are two adjacent points of II°

such that s € (¢3,¢),,]. Hence, zgf converges to z, ¢ for all (s,t) € A*. Hence,
it follows from (2.6) that z satisfies the Chasles relation: z,; = 2,4, + 2y, for
all 0 < s < u <t < 1. Besides, from the continuity of 7, (s,t) € AT — Zg,t 1S
continuous. _ _

Let Z be another limit of the sequence (25)5>0, and set zZg+ = Zt — Zs
for all (s,t) € AT. As for z, Z also satisfies the Chasles relation, and so is
Az =% — z. However, |Az| < 2Kw(s,t)?. For any partition IT = {t1,...,tx }
of [s, 1],
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k—1 k—1
< Z ‘Aztutwd‘ < 2sz(ti7ti+1)9
i=1 =1

< 2K ,t ti, b 6—1 0
h w(s )izsll,lP,kW(l H_l) mesh(IT)—0

So, the limit of (z H5)5>0 is unique.

With (2.5) and the boundedness of f, |25 ¢| < Kw(s,t)? +|ys.¢|. But |ys.| <
1£1loc lzsel < [1fllog @ (s,8)!/P. Thus, |2s.? < (Kw(0,1)* + || |5 )w(s,t) and
z is of finite p-variation. The proposition is then proved. a

2.2 The semi-norm of p-variation

In the preceding proof, the regularity of x plays in fact no role. The only
condition required is (2.2). Note that (2.2) implies that for any partition
IT = {tg,...,tg } of [s,1],

k—1 k—1
Z ‘xtul - xti|p Zw t“tl-‘rl (Svt)'
i=0 i=0

Define the semi-norm of p-variation by

k—1 1/p

Var (z) = sup T,y — T, |P . 2.7

V= ew <z| B ) o
partition of [s,t]

Remark 2.1. When one considers x(t) = ¢ and p > 1, it is immediate that
for any partition 0 < ty < -+ < ¢ < 1, the following inequality holds:
St — tilP < SUP;—q. k1 |tix1 — ti[P~'. The later quantity converges
to 0 with the mesh of the partition. But Var, [, +(x) = 1. This means that in
the definition of the p-variation, we have really to consider a supremum on all
the partitions, and not only on those whose mesh converges to 0.

An interesting property of the p-variation is that as soon as Vary, [, ()
is finite, then Varg s, (z) < Vary, |5 4(2) for all ¢ > p. In other words, any
function of finite p-variation is of finite g-variation for all ¢ > p.

Inequality (2.2) in Assumption 2.2 means that Var, [, 4(7) < w(s,t) for all
0 < s <t < 1. On the other hand, we know that Var, 1, . (x) + Vary, ,, 4 (x) <
Vary, (.4(z).

Although Var,, [ 1) is only a semi-norm, Var, j0.1j(-) + |||, is a norm on
the space of continuous function. However, the space of continuous functions
with this norm is not separable.

Set for (s,t) € AT and two continuous functions z and v,

Op, (s, (x,y) = Var (z —y),
P [s,t]
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and 0y, [5,4(%) = 0,54 (2,0). Set also d,(x,y) = 0pj01)(2,y) and §,(x) =
1) 7[071]( z). Note that 6, 0,1) is a not a distance, excepted when restricted to
functions for which g is fixed.

Let = be a function such that d,(x) is finite. If there exists a function
w: AT — R, satisfying Assumption 2.1 and such that

|xt - xs|p < w(svt)

for all (s,t) € AT, then z is said to be of finite p-variation controlled by w. It
is clear that the function w defined by w(s,t) = 0[5, (x)P satisfies Assump-
tions 2.1 and that for all (s,t) € AT, |2y — 24P < w(s,t).

The following lemma is related to sequences of functions of finite p-
variation.

Lemma 2.3. Let (z™)nen be a sequence of functions of finite p-variation and
let © be a function of finite p-variation such that §,(z",x) converges to 0.
Then there exists a subsequence (z™)ren and some function w satisfying
Assumption 2.1 such that x™ and x are of finite p-variation controlled by w.
Moreover, for any € > 0, there exists an integer k for which

Yl 2k, 0,502, x) <ew(s,t) for all (s,t) € AT.

Proof. There exists a subsequence (n)xen such that §,(z, ™) < 47F. Hence,

we set
w(s,t)z?”l( Js. (@ +Z25 (s, (% ))

By our choice of the subsequence, this functlon w is well defined for all (s,t) €
AT As 0 4 (2", 1) < Op(a”, ) —0, and 4y, 4 (", x) is continuous near

the diagonal, (s,t) — zof) 2k Op,[s t]( 2™ )P is continuous near the diagonal.
Similarly, (s,t) + 0[5, (2™)? is continuous near the diagonal. Clearly, w is
super-additive and satisfies Assumption 2.1.

Since (5,4 (2™*)P < 2”7151,7[37,&] (™, z)P + 2”*15p7[s7t] (2)P, z and all of the
x™’s are controlled by w. Furthermore,

1
2—kw(s,t),

O[5, (2", 2)P <
and the lemma is proved. a
The proof of the following Lemma is straightforward.

Lemma 2.4 (A convergence and compactness criterion). Let ¢ be a
real number greater than p. Then,

Var (z —2")? < 2P sup (z, — ;)" P( Var (z)? + Var (2")P). 2.8
q7[071]( ) re[o,l]( ) (177[071]( ) pv[Ovl]( ) ) 28)

Moreover, if (z™)nen converges pointwise to x, then

Var (z) < liminf Var (z").
p,[0,1] neN  p,[0,1]
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Hence, to prove that x™ converges to x in g¢-variation, we have only to
prove that 2™ converges uniformly to = and that sup,,cy Var, ,1(2™) is finite
for some p < gq.

Thus, if (2™),en is equi-continuous, uniformly bounded, and the sequence
(Vary, 10,1](2™) )nen is also bounded, then there exists a subsequence of (2" ),en
which converges uniformly to a function x. With (2.8), 2™ converges in g¢-
variation to x for any ¢q > p.

Remark 2.2 (Extension of Helly’s selection principle). If (2™)nen is a fam-
ily of continuous functions uniformly bounded and of finite p-variation such
that (Var, [0,1(2"))nen is bounded, then there exists a function z of finite
p-variation and a subsequence (z™*)gen such that z™F converges pointwise
to . But x is not necessarily continuous. This may be seen as an extension
of Helly’s selection principle (see [7, Theorem 6.1]).

2.3 Continuity

For any bounded and a-Hdolder continuous function f with a Holder constant
a > p—1, we have constructed a map £ : ¢ — z, where z is a function on [0, 1]
with finite p-variation (with 1 < p < 2) and z is the function (fst f(zy) day;
0<s<t <),

We have seen in Proposition 2.1 that £¢(z) is also of finite p-variation.

We are now interested in the continuity of K¢. Let z and z be two func-
tions of finite p-variation, both satisfying Assumption 2.2 with respect to the
same w.

Proposition 2.2. Assume that there exists some € > 0 such that for all 0 <
s<t<1,

‘(xt - it) - (335 - ‘;ES)‘p < Ew(&t),
and that xo = Zo. Then there exists a function k() decreasing to 0 as e
decreases to 0 and depending only on f and p such that

|85 (@)t — Ry (@)se] < w(e)w(s, 1)1/
for all (s,t) € AT,

Proof. The proof is similar to the one of Proposition 2.1. Using the same
notations, define zgf and ng. As previously, we create a new partition IT by
suppressing a carefully chosen point of I7°. Hence, to estimate

b

’(zg; - Egts) — (2, =z)

we have only to estimate, for all u € [s, t],

A= ‘(ys,t — Ys,u — yU,t) - (gs,t — Ysu — gU,t)L



An Introduction to Rough Paths 15
with ys . = f(2s) (2 — zs) and ys = f(Zs) (T — Ts). Thus,

Al < | (F(@a) = fl@s) (2 — 20) — (f@) — F@)) (@ — T
< |f(ww) = f@s)] Joe — Ty — (2u — Tu)|
+ 1 f(xu) = f(zs) = f(@u) + f(@)] [T — Tl

Now, if C' denotes the a-Holder constant of f, we remark that
|f () = f(2s) = f(@0) + £(Fo)] < 26°/PC(0,1)"/7

and that
‘f(xu) - f(xs) - f(iu) + f(afs” < 20"‘)(87t)a/p'
Choosing 8 € (0,1) such that Sa+ 1 > p, one gets

|A| < Ce/Puw(s, t)H/P 4 20e0=B)/py(0,1) APy (s, ¢)(@B+1)/p,

Hence, as in the proof of Proposition 2.1,
5

s ~, ~
’Zi]t - th — Ys,t — ys,t] < Ifl(ei)u)(s,t)e7

where k’(g) decreases to 0 with ¢, and depends only on f, zp and p. On the
other hand, there exists some function k" decreasing to 0 with e such that

[Ys.t — Us.e| < &"(e)w(s,t)V/P. In the limit, if & = #'w(0,1)0=D/P 4y,
26,6 = Zo,tl = [R5 (2)s0 = R (F)s,t] < R(e)w(s, )7
The Proposition is then proved. a

Denote by GP(R?) the space of continuous functions in C([0, 1]; R?) of finite
p-variation and starting at the same given point z¢. Denote by VP the topology
that the distance 6, defines on the space GP(R?).

Corollary 2.1. Let f be a bounded and a-Hélder continuous function, and
let p € [1,2) be such that o > p — 1. Let (zn)nen be a sequence of continu-
ous functions in GP(RY) converging in VP to a function x in GP(R?). Then
R¢(zn) € GP(RY) converges in VP to Ry(z). Thus, x — Ky(z) is continuous
with respect to 6.

Proof. Using Lemma 2.3, there exists a function w : AT — R, satisfying
Assumption 2.1 that controls z and 2™ (or maybe a subsequence of it) and
such that for any € > 0, there exists some integer n. for which

|p — x5 — (2} — 2)|" <ew(st)

for every n > n. and all (s,t) € AT. From Proposition 2.2, for all (s,t) € AT
and any n € N,

|85 (@) = Ry (@)l < R(E)w(s, )7,
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with k(e) —— 0. This function x depends only on f and p. As w is bounded

e—0
on At
Var (R¢(x) — &¢(z™))" 0.
pdau( £(x) #( )) e
The previous convergences are proved at least along a subsequence, but using
the way Lemma 2.3 is proved, the limit of R¢(z") is in fact unique. The
Corollary is then proved. O

As an application, let 7% = {tf | 0< tg <--- <K tig <1 } be a family of
partitions of [0, 1] whose meshes go to 0 with ¢. Then it is easily seen that the
piecewise linear approximation 2° of some path 2 € G4(R?) for some ¢ € [1,2)
given by

t—t2

é 6 410

Ty = Ty + Py — —Zt5 (Itf+1 —ay5) when t € [t 7]
i1 T L

converges uniformly to z.
Let 0 < s0 < ... < s¢ <1 be a partition of [0, 1]. Then,

-1 k-1
Z 5§ _ .89 _ Z Z s .59
|xsi+1 xsi| - xslurl xsi
=1 J=0 i s.t. si€[t],t9, 4]
k-1
2 : 2 : ) 5|4
+ ’xsi+l - xsi :
J=0 i s.t. t?e(s“swrl)
However,
S § |4 q
z : |I5i+1 — T, < |xt]‘+l — Tt
i s.t. sie[t‘;,t?+l]
and if 4 is such that t? € (8;,8i+1) for a given j, then
§ S |4 q—1 q q—1 q
Tsipr — x3i| <2 |];75§Jrl - xt§| +2 ‘mti - xt§71| .
. . . . 5 _ 5 _
In the previous inequality, we set if necessary, t>; = 0 and ths = 1. It

is now clear that Varg jo 1) (2°) < 3 Varg [0,1](x), and then, from Lemma 2.4,
Vary, 0,1] (2° — z) converges to 0 for all p > ¢. If follows that

sy da)
| e

This convergence holds in fact both in p-variation and uniformly.

t
drm/s f(z,) da,.
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2.4 Solving differential equations

Let f = (f1,..., fa) be a function from W = R™ to W¢. We are now interested
in solving the differential equation

d + ‘
v=vt [ fw)ds (2.9)
i=1vS

where z is a continuous function of finite p-variation, with p € [1, 2).

Theorem 2.1. If f is a-Hélder continuous with o > p — 1 and x is in
GP(RY), then there exists a solution y in GP(R™) to (2.9). Moreover, if f is
bounded, continuous with a bounded derivative which is a-Holder continuous
with a > p — 1, then y with a given initial condition yo, ts unique. Besides,
the map x — y = Ty, (x) (called the 1td map) is continuous from GP(R?)
to GP(R™).

Proof. For two continuous paths y,z of finite p-variation, denote by £ the
map defined by

£t - [] - / (i o] +Z i) dx:;>

for any (s,t) € AT. Clearly, T = z. Define also J(y,z) = 3. For any integer
n > 1, set y" = J(y" 1, x). Of course, if y converges to some function y in
GP(R™), then y is solution to (2.9).

Step 1: Existence. Assume that two paths z and y of finite p-variation are
controlled respectively by w and yw on a time interval [S,T], for some con-
stant v > 0.

A slight modification of the proof of Proposition 2.1 shows that there exists
some constant K, depending only on f and p, such that

|Ts,t(y, ) — fys)zs,i] < ’ya/pKw(s,t)g forall S <s<t<T,
with 6 = HTQ > 1. Hence,
[Tt (g, 2)| < (K P (S, TP 4 | fll o )w(s, )7
If v =27 || f||”,, and S and T are close enough so that
w(S,T)" VPEY P < || fll o »
we have proved that on [S,T], J(y,z) is of finite p-variation controlled
by yw(s, t).

Thus, one may construct a finite number N of intervals [T}, T;11] such that
To <Ty < -+ < Ty and w(T3, T )PP < 27K V||| 507
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From a function 3° of finite p-variation controlled by yw, one may recur-
sively construct functions y” by setting y, = J(y" ' x)ss and Yy = yo,
where 1 is a given point in R™.

On each interval [T;, T;11], y™ is of finite p-variation controlled by ~yw.
From the convexity inequality, [y [P < NP~ 'yw(s,t) for all (s,1) € AT.

So, (y7;0 < t < 1)nen is equi-continuous, bounded, and according to
Ascoli’s theorem and Lemma 2.4, there exists some y of finite p-variation
such that a subsequence of (y™),en converges to y in g-variation for some
q > p. But y — J(y, ) is also continuous on GZ(R™). So, we deduce that y is
solution to (2.9) with the initial condition yq.

n

Step 2: Uniqueness. In this step, assume that f is continuous, bounded with
a bounded a-Holder continuous derivative with o > p — 1.

Let y and y be two paths of finite p-variation controlled by w and starting
from the same point, that is yg = 7o. Assume also that x is of finite p-variation
controlled by w, and that y — 4 is of finite p-variation controlled by yw for
some v > 0. It is clear that v may be chosen smaller than 27.

We are interested in J(y,z) — J(y,x). With our construction, this dif-
ference is approximated by Zi:ll (f(ye,) — f(Ye,))2e, 1.4, On some partitions
IT = {t;|0<t <...<tp <1} whose meshes go to 0. We follow the proof
of Proposition 2.1 and we set for all s < u < t,

Esu,t = |(f(y8) - f@\S))IS,t - (f(yS) - f@\S))IS,u - (f(yU) - f@\U))xut‘
= | () = F0) = (F@) = £G) )

1
gy/vﬂ%+ﬂ@—%nwa—%NT
0

1
jAVﬂm+ﬂ%—me%—%NTM&W“

But, as Vf is a-Hélder continuous, there exists some constant C' such that
cut € 005,07 (19 Sl @ = = B+ )

+cm—%%f%—%+ﬂ@—%—m+%wm)

< (s, )2 (191l oo 725, )7 + €M Pur(0,u) (s, )/
+ C%”a)/%(o, u)l/pw(s, u)”‘/p)

< w(s, t)(1+a)/p71/p(cl + Cﬂa/p)

where C7 and C5 depend only on f, w, a and p. We have also remarked that ~
may be chosen smaller than 2P, 80 €54+ < w(s, t)(1+a)/”71/”(01 +2%Cy).

Following the proof of Proposition 2.1, for all (s,t) € AT, there exist some
constant K depending only on f, w, @ and p such that
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|35t (ys ) = TG, @) — (f(ys) = F(Ts))ws,0| < Ky Pw(s, 6)F/P. (2.10)
On the other hand,

|(F(ys) = F@s))sa| Sw (s, )P IVl 1yo.s = TFo.s

<w(s
< w(s, )Pw(0, )PPV - (2.11)

From (2.10) and (2.11), one can select a time T small enough depending on
a, p, f and w such that

1/p
w(s, )P,

‘js7t(y>x) - js7t(§/\> LIT)| < 1

In other words, J(y, z) — J(¥, ) is controlled by 27Pyw on [0, T.

If both y and ¥ are solutions to (2.9), then J(y,z) — 3(y,x) = y — §. So,
iterating the procedure, one deduces that y — 7 is controlled by 27"Pw on
the time interval [0,T] for each integer n. This proves that y = ¥ on [0, T].
Similarly, it is possible to construct iteratively a finite sequence of increasing
times Ty for k = 1,...,n with T} = 0, T, = T and such that T;, = 1 and
y =g on [Ty, Tit1] as soon as yr, = yr, . For that, these times are constructed
so that w(Ty, Ti+1) is smaller than a given constant ¢ small enough, which
explains why this set is finite. We deduce that the solution of (2.9) is unique
on [0,1].

Step 3: Continuity. Denote by Jy ., the map which at x gives the solution y
to (2.9) with the given initial condition yg.

For a given 3°, one may iteratively construct for each integer n > 1 a
path y" by setting y" = J(y" !, 2). In Step 1, we have seen that (y"),en
admits a convergent subsequence, and in Step 2, under stronger hypotheses
on f, that the limit Jy,,(z) of (y")nen is unique. Furthermore, if y°, y!,
y!' —4y° and z are of finite p-variation controlled by w, y™ — y™ ' are of finite
p-variation controlled by 2~ ("~YPw. So, 3, (x) — y™ is of finite p-variation
controlled by 2~ ("=2)py,,

Now, consider two paths  and Z both of finite p-variation controlled by
w, and such that x — Z is of finite p-variation controlled by ew for some ¢ > 0.
Let (y™)nen and (§")nen be two sequences of functions of finite p-variation
controlled by w with 4" = 7y and constructed by setting y™ = J(y"~1,z) and
y" = J(y"~1, 7). From Proposition 2.2 it is clear that for each n > 0, there
exists a function ¢, (¢) converging to 0 with ¢ such that y™ — g™ is of finite
p-variation controlled by ¢, (¢)w. But y — y™ and y — y™ are both of finite
p-variation controlled by 2~ (*~Dpy,

Thus, for all n > 0, there exists ng large enough so that both J¢ ., () —y
and Jf,,(Z) — y" is controlled by nw for all n > ng. Besides, if € is small
enough and z — ¥ is controlled by ew, then y™ — y™° is controlled by nw.
This means that for ¢ small enough, J¢ . (x) — J7 4, (Z) is controlled by 3Pnw,
if € is also chosen smaller than n. With Lemma 3.1, this means that J¢ ,, is
continuous from GP(R™) to GP(R™). a

n
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Remark 2.83. The previous proof is slightly different from the original proof
of [32], where f was required to be differentiable with a a-Holder continuous
derivative to prove the existence of a solution.

3 Integration of one-form along trajectories of finite
p-variation with 2 <p < 3

In this section, we consider the case of a path z with finite p-variation, with
2<p<3.
3.1 Second iterated integrals

Let 2 be a piecewise smooth function from [0, 1] to R%. Fori,j =1,...,d and
(s,t) € AT, set

¢ t
/ drz, dal, = / (w, —xg)dal = / (zy, — o) (2?);, dry.
s<ri<re<t s s

Let eq,...,eq be the canonical basis of V = R? which implies that z; =
Z?Zl e;xt for all t € [0,1]. In order to simplify expressions, define fst dz @ dx
as an element of V® V by

t d
/ dr ® dz = E e; ®e; / dx;, dz,.
s i,j=1 s<ry<rs<t

Remark that for all 0 < s <u <t <1,
t u t
/dx@dx:/ dx®dx+/dx®dx+(wu—xs)®(xt—xu). (3.1)

The space V ® V is equipped with a norm ||-||y,qy, also denoted by | - |,
such that ||z @ ylly gy < llzlly [yl

3.2 Estimating the error in the approximated Chasles’ relation for
an irregular control

We assume still that x is piecewise smooth. However, the only information we
want to use is that x is continuous, and the following assumptions on x: there
exists a function w satisfying Assumption 2.1 and a real number p € [2,3)
such that for all (s,t) € AT,

|z — 25|P < w(s,t), (3.2a)

t p/2
/ dr®dx| < w(s,i). (3.2b)
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Assume also that f : R — R? is bounded, with a bounded derivative. This
derivative is a-Holder continuous, with « such that 2 + a > p.
Define the p-variation on [s, ] of a function y from A% to RY by

1/p

Var su .

= o e} (Z ol )
partition of [s,t]

When ys: = y+ — s, this definition is the same as the one of (2.7).
Under these conditions (3.2a)-(3.2b),

¢
Var (z) < 400 and Var (/ dz ® da:) < 400.
p,[0,1] p/2,[0,1] s

However, by (3.1), this does not imply that the map t — fg dx ® dx has finite
p/2-variation.

Our goal is now to define a “good approximation” y, ; of fst f(x,)dz,, so
that this integral will be a limit of Riemann sums:

kS —1

5
/ f(zy)dz, = hm zst with zst = Z Yo as,,
=0
for a partition I7° = {J,14,...,t2, } of [s,t] whose mesh goes to zero with §.

In the proof of Proposition 2. 1 We have seen that one can consider the limit
5
of zI";, provided that one has a control of the form

[Ys,t = Ysyu — Yurt] < Cw(s, t) forall 0 <s<u<t<l,

for some constant C' and some 6 > 1. The fact that 6 > 1 is crucial, since the
proof of Proposition 2.1 involves the Zeta function ((0) =>_, -, 1/nf.

In Lemma 2.1, we used the fact that f is a-Ho6lder continuous, that o > p
and that |z; — 2P < w(t, s). With only (3.2a) if p > 2, this no longer works
even if f has a bounded derivative, i.e.,« = 1.

We are then forced to use a better estimate. If x is smooth, then for

i=1,....d,
_ . d.rt gy
fa) =)+ [ @) an
i=1"9$ J

and then

t ) ) t ) d t 8fi _ )
[ rean, = s [ a+ 3 [ [0 G ant as,

For any y in V = R?, denote by V f(y) be the bilinear form defined on V&V by




22 Antoine Lejay

ofi

(Vi) ei®e;) = a—xi(y)-

A first approximation of the integral fst f(z,)dz, will be given by

Yst = fxs)(r — w5) + Vf(xs)/ dz ® dz. (3.3)

With (3.2a) and (3.2b), P < N(f)w(0,1)w(s,t), where

N(f)=inf{M 20| ||fle < M|Vflo <M
sup IVf(x) = VIi)l/le—y|* <M} (3.4)

So, y is of finite p-variation.
Lemma 3.1. For all 0 < s <u <t

< 2N(f)w(s, 1)’

|ys7t - ys7u -
with 0 = (2+ «a)/p > 1.
Proof. Let a and b be two points of R?. Then,

d 1 i
fi(b) = f(a) +Z/0 g:]; (a+ (b—a)r)(¥/ —a)dr

i) N O ;
= fi@) + 30 G o) + Fla.) (35)
with
1 a, afl 8]” —a)r J — a?)dr
IRi(0.) ( RS R UE) [CETAT

( b —af "
since the derivative of f is a-Hoélder continuous (the quantity N(f) has been
defined in (3.4)). Set R = (R!,..., R%).

Using (3.5) and (3.1),
t
‘ys,t — Ysu — yu7t| < ‘(Vf(xu) - Vf(flfs)) / dzr ® dx

+ | Rz, z4) (2 — ).

As V f is a-Hoélder continuous, x satisfies (3.2a) and fst dz®dx satisfies (3.2b),

2
< Cuw(s, t)? with § = tta > 1.
p

|ys,t - ys,u

The Lemma is then proved. a
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3.3 Geometric multiplicative functionals

One may re-use the proof of Proposition 2.1 exactly the same way with y,+
defined by (3.3), and not by (2.3). As we saw in the proof of Proposition 2.1
or in the proof of Lemma 3.1, the smoothness of = plays no role.

However, if  is not smooth, fst dz ® dz has to be defined. In fact, there is
no general procedure to construct this term. However, for some particular x,
such as the trajectories of some stochastic process, this is possible, but may be
rather technical (see Sect. 12 for examples of stochastic processes for which the
second order iterated integral has been defined). In the following, we assume
that the second order iterated integral exists. But the path we consider is not
2 but the couple (z, f dz ® dz), which no longer lives in R4, but in R%+4* and
whose components satisfy some algebraic relations.

With this end in view, consider x,; = (x!;,x3 ;) defined for (s,t) € A™,
such that there exists a function w satisfying Assumption 2.1 and a constant
p € [2,3) for which:

X;t € V and x;t =T — T, (3.7a
|xi7t|p < w(s,t), (3.7b
x;, EV®Vandx2, = xiu + Xit + x;u ® Xy 4, (3.7¢

)
)
)
22 < w(s, ) (3.7)
for all 0 < s < u <t < 1. Such a x is called a multiplicative functional with
p-variation controlled by w. Condition (3.7a) means that x! may be identified
with the path z. In this case, we say that x lies above x. Condition (3.7b)
means that « has finite p-variation, and is (3.2a). Condition (3.7c¢) is equivalent
to (3.1), while (3.7d) is analogue to (3.2b).

When z is piecewise smooth, set x;,t = 2+ — x5, and xgjt = fst dr ®
dx, and (3.7a)-(3.7d) are clearly satisfied. Denote by S?(V) the set of such
multiplicative functionals.

The distance d, [5 4 is extended to p € [2,3) by

6p,[s,t] (X7 Y) = Var (Xl - yl) + Var (X2 - y2)'
p,[s,t] p/2;[s,1]
Denote still by VP the topology it generates on the space of multiplicative
functionals of finite p-variation.

We restrict ourself to multiplicative functionals which may be approxi-
mated by some elements in S?(V), where §?(V) is the set of multiplicative
functionals x such that x;t = ¢ — 55 and xgyt = fst dz ® dz for a piecewise
smooth path z. Define GP(V) as the set a multiplicative functionals satisfying
(3.7a)-(3.7d) for a given control w, and such that

x may be approximated in V¥ by elements in S*(V). (3.7¢)

In this case, x is said to be a geometric multiplicative functional. In fact, (3.7¢)
is not really necessary in the case 2 < p < 3, but provides us with an intuitive
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view of integral driven by rough paths. This issue is discussed in Sect. 10.3
for Brownian motion.

Remark 8.1. If x belongs to GP(V), and ¢ = (¢; ;)i j=1,...,4 IS an antisymmetric
matrix, i.e., ¢;; = —c;,i, seen as an element on V ® V, then the function
(s,t) € AT — x41 + c(t — s) is also an element of GP(V). We give further
explanations in Sects. 6.2 and 10.2.

3.4 Integration of a one-form

In the previous sections, we have given all the elements to construct the in-
tegral of a differential one-form along a path x of finite p-variations with
p € [2,3), given that one also knows a geometric multiplicative x lying above x.

Once Lemma 3.1 has been proved, then one could use the same machinery
as in the proof of Proposition 2.1, to prove that

K —1
zap=lm Dy (3:8)
i=0
exists and is unique for all partition {tg, R tié } of [s,t] when y is given by

(3.3).

Proposition 3.1 below summarizes this result. However, we will give in the
next section a more complete construction of the integral of a one-form along
the path z. In this new definition, the integral belongs to the set of geometric
multiplicative functionals GP(W). This means that this integral could also be
used as a path along which a another differential one-form is integrated.

Proposition 3.1. Let x be an element in GP(V) lying above a continuous
path x for p € [2,3). Let f be a continuous, bounded function with a-Holder
continuous, bounded derivatives for a > p—2. Then, for all 0 < s <t <1 and
any family of partitions IT° = {tg, e ,tié } of [s,t] whose meshes decrease
to 0 as & — 0, the limit zs; defined in (3.8) exists and is unique, when
Ysi = flxs)xi, + Vf(xs)x2,. The limit z,;, which does not depend on the
partitions II°, is denoted by fst f(x,)dx,, and is of finite p-variation. Finally,
forall 0 <s<u<<t<, 24 = 2,0 + Zu-

We also have the equivalent of the continuity result of Proposition 2.2,
assuming that x? and X2 are close enough in the sense given in Proposition 2.2,
where p is replaced by p/2.

3.5 The iterated integrals of fst f(z,) dx,

Let us consider the differential form f(z) = 3%, fi(x)dz’, where the fi’s are
functions from V = R? into W = R™. The integral z., = fst f(z,) dx, takes

)
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its value in W, and is of finite p-variation. However, to construct the solution
of a differential equation of the type

t
Yt = Ys +/ f(yr) dxy,

one may first define the integration of one-forms, and then use Picard’s it-
eration principle. However, integrating with respect to a control of finite p-
variation with p € [2,3) requires an element in GP(V). So, to use a fixed point
theorem, we need to construct fst f(x,) dx, not only as an element of W, but
also as an element of GP(W).

To this end, set

Y;,t = f(iﬂs)X;t + Vf(%)xit eW, (3.9a)
y2, = f(2:) ® f(zs) X2, EWRW, (3.9b)

and ys; = (y;t,yit). In the definition of y?, we used a shorthand, which
means in fact that
d

ygt = Z fl(xS) ®fj(l”s)X§,’§’j-

i,j=1
Denote by z! , the element of W given by fst f (%) dx,.

Let 1 denote an element of a one-dimensional space. We use the following
computation rule: If ¥ belongs to W®* for some integer k = 1,2, then 1®y =
y®1 =y € WP If y and 2 belong to W, then y ® z belongs to W®2,
If y belongs to W and z belongs to W®2, then y ® 2 = 2 ® y = 0. Set
T»(W) = 1@ W @ W®2. By the definition of the tensor product, if x, y and 2
belong to T5(W), then for all a, 8 € R, (azx + fy) ® z = ax ® z + Sy ® z and
z@(ax+0y) =az@z+ fry.

Let IT = {t;|to < --- < t¢} be a partition of [s,t]. Set

th = (1 + Z%(],tl + y??(],tl) ®-® (1 + Z%g,],tg + yt22717t2).

The computation rules previously given mean that we keep only the elements
in T5(W), and not those in W®* for k > 2. From Proposition 3.1, the projec-
tion z/11 of 2" € To(W) on W is equal to z} ,.

The proof that z/! has a limit when the mesh of the partition IT decreases
to 0 is similar to the proof of Proposition 2.1. But we have also to estimate
the “error” when yit is split into yiu and yiyt.

Lemma 3.2. For all 0 < s<u <t<1, set
e(s,ut) =¥21 ~ Yau — Yot = You ® Yur-
There exists some constant C depending only on N(f), w(0,1) and a such that
le(s,u,t)| < Cuw(s,t)?
with 0 = (2+ «a)/p > 1.
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Proof. Recall that x; = Xé,t' Using (3.7c) and the relation

yi,u ® y711,t = f(xs)x;,u ® f(xu)xi7t
= f(ws) ® f(zs) - X;,u ® lez,t + fzs) @ (f(zu) — f2s)) - X;,u ® X71J,7t’

we obtain that

(s, u,t) = (f(Is) ® f(zs) — flon) ® f(Iu)) 'Xit
- f(xs) ® (f(xu) - f(xs)) : x;,u ® qui,t'

But

f(xs) ® f(xs) = f(2n) @ f(2u)
= (f(zs) = f(2u) ® fl@s) + fza) @ (f(2:) — f(2a))-

Using the relation f(zy) — f(zs) = Vf(zs)(xy — xs) + R(zy,xs) together
with (3.6), the boundedness of f and V f, we obtain that

[f(xs) = f(2u) @ flzs)] <

~
<

2N(f)2(‘xu = Ts| + |2y — x3|1+a)

2N(f)? (w(s, HYP 4+ w(s, t)(1+0‘)/”).
Moreover, [x}, ® X, ;| < |x{,|-[x} 4] < w(s,t)?/?. The Lemma is now easily
proved by combining all the previous estimates. a

Proposition 3.2. As the mesh of II decreases to 0, zgt admits a limit, de-

noted by zs,; and by fst f(x,)dx,.. This limit is of finite p-variation.

Proof. Assume that ITN(s,t) has more than one element. Let 5, be an element
of IT N (s,t) such that w(tr—1,tk+1) < 2w(s,t)/|IT N (s,t)| (see Lemma 2.2).
We use the convention that tx_1 = s if IT N (s,tx) = &, and that tx11 = ¢ is
II N (tx,t) = @. Using the computations’ rules on 1 ® W & W2 provided in
Sect. 3.5, one has
1 2 1 2
(1 + Ztk—lvtk_‘_ytk—htk) ® (1 + Ztk7tk+l + ytkvthrl)
1 2 2 1 1
=1+ Ztk—17tk+1 + ytk—17tk + ytk,tk+1 + Ztk—latk ® Ztk7tk+1
=1+ ng717tk+1 + yt2k—17tk+1 - g(tk*h tr, thFl)

1 1 1 1
+ Zte_1,te ® Ztetorr — Ytuo1,te ® Yitn tuyr

Set

.1 1 ol 1
6k = Zyy oyt ® Ztk,tk+1 Yt 1t ® ytk7tk+1

— (1 ol 1 . 1 1
- (Ztk—lvtk ytk—lvtk) ® Ztk7tk+l Yi_1,ti ® (ytkvtk+1 Ztkvthrl)'

In Proposition 3.1, as in Proposition 2.1, for all (r,u) € AT,
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|Z:’,u - y}’,u‘ < KOJ(’I‘, u)(2+a)/p

for some constant K depending on f, a and p. Besides, |y, | < Cw(r, u)t/P 4
Cw(r,u)??, where C is ||f|lo, + V£l S0, [0k < C'w(s,t)?, where the
constants 8’ > 1 and C” depend only on f, a and p. Thus, if [T’ = IT \ {#; }.

|th - Zgg| < |5(t/€—1>tk>tk+1)| + ‘5” < Cuw(87t)an>

where the constants §” > 1 and C” depend only on f, a and p. The end of
the proof is similar to the one of Proposition 2.1.

For the uniqueness of the limit, remark that if z and z are two multiplica-
tive functionals of finite p-variation such that =z}, =z}, for all (s,t) € AT,
then

(s, t) = Zg,t - Ez,t
is additive, i.e., ¥(s,u) + ¥(u,t) = ¥(s,t) forall 0 < s < u <t < 1. Let =
and z be two cluster points of (ZH5)5>0 for a family (I71°)s-0 of partitions of
[0,1]. By construction, z! = z'. Moreover, for all integer n > 1,

n—1
|z§7t — 'zft| < Z|Z??vt?+1 _E??,t;‘+1| < 2Kw(s,t) iilsupnilw(t?,tzlﬂ)e_l,
P =1,...,

where t = s+ i(t — s)/n. Since w is continuous near its diagonal, letting n
increase to infinity proves that z2 = z2, and the limit is unique. a

Corollary 3.1. The map

x € GP(V) — (/:f(xo +x§,.) dx,; (s,1) € A+> € GP(W)

is continuous with respect to 6.

It is because this map is continuous that, in view of (3.7e), the integral
belongs to GP(W).

The proof of Corollary 3.1 is similar to the one of Proposition 2.2 and
Corollary 2.1, although a bit more complicated, since the number of terms to
consider is more important.

4 A faithful representation of paths

We have explained in the previous sections how to construct solutions of
differential equations controlled by path of finite p-variations with p < 3. We
have also constructed defined the integration along such irregular paths. We
have seen that the “iterated integrals” appear naturally for defining our new
objects. Our article is now devoted to provide the construction of these objects
for all real number p.
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In this section and the next one, we consider iterated integrals of piecewise
smooth paths. We present some results, mainly due to K.-T. Chen (see [6]
and related articles), which allows to perform some manipulations on smooth
paths which could be expressed using algebraic computations. These results
provides us with a very powerful tool. The first main result expresses that a
piecewise smooth path x can be uniquely defined by a power series involving
its iterated integrals.

4.1 The Chen series

Let 2 : [0,t] — V = R? be a piecewise smooth path. We shall assume that for
all s € (0,t), there exists no € > 0 such that z([s — ¢, s]) = z([s, s + €]). Such
a path is called irreducible. Let I = (i1,...,4x) be a multi-index. Denote by
fot drx the iterated integral

t
= itk
/ de—/ dzh - drd.
0 0<sqy <---<sqy, <t

Introduce some indeterminates X', ..., X% Each of these indeterminates cor-
responds to a direction in the space R%. Thus, X’ may be identified with the
vector e; of the canonical basis of R?. For a multi-index I = (i1,...,1%), set
X1 = Xt ... X,

The non-commutative power series with indeterminates X* fori=1,...,d
is given by

a0, 05)= XI/O drz

I multi-index

provides a faithful representation of x, and @ is called a Chen series.

Theorem 4.1 (K.-T. Chen). If &([0,t],2) = &([0,t],y) for two paths x
and y, then © =y on [0,t] up to a translation.

In facts, manipulation on paths may be considered as manipulation on
power series, as we will see.

4.2 Concatenating two paths

If z denotes the path obtained by the concatenation of two paths z : [0, ¢] +— RY
and y : [t, s] — R? such that z(¢) = y(t), then

@([0,8],2’) :¢([0>t]>x)¢([t7s]7y)' (4.1)

It means that the power series corresponding to z is equal to the formal
non-commutative product of the two power series corresponding to x and y.
Furthermore, if #(s) = x(t — s), then &([0,t],%) = &([0,], ) .
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4.3 Products of iterated integrals

Another interesting property arises when one considers the product of two
iterated integrals:

. -/
i i 7 (3]
![/871‘, = (/ dxull e dﬂ?u]]) (/ d.’L'ull e dl'dj,).
s<uy <---<u; <t s<uy <---<uys <t

If I =(i1,...,i;) and I" = (41, ..., ) are two multi-indices, denote by I W .J

the shuffle product of I and J. Then

i’ i’
U,y = E </ dz., ...dxu’j,, .
. . s<u1<--~<uju <t

K:(z’l’,.“?z'j’,,) multi-index €IU.J

The shuffle product I W J of I and J is the set of all multi-indexes of length
length(I) 4 length(J) such that for each K in I U .J, the elements of K cor-
respond either to the elements of I or J, and I (resp. J) is recovered if the
elements of T U J belonging to I (resp. J) are kept regardless the elements of
J (resp. I).

5 Lie algebra and enveloping algebra

In this section, we continue to manipulate piecewise smooth paths and their
Chen series. The main result of this section is Proposition 5.2, which asserts
that the Chen series @([s,t], z) could also be expressed as

@([s,t],x)—GXp( > @I/ d1:13>,

I multi-index

where the coefficients @ belong to a particular subspace of the space con-
taining the X’’s for all multi-index I.

5.1 Enveloping algebra

We present now some aspects of Lie algebras and enveloping algebras. The
relation with @(][0, t], x) is developed in Sect. 5.3. On this topic, see for example
[40, Chap. 1].

Let A = {ai,...,a, } be some letters. In Sect. 5.3, these letters will be
identified with the indeterminates X*. The letters may be used to construct
some words a;, - - - a;, for some multi-index I = (i1,...,4x) of length k. The
set of words with letters in A for which an empty word 1 is added is denoted
by A*. Let K be a ring containing Q. A non-commutative polynomial P is a
linear combination over K of words on A :
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P = Z P,w, P, € K with only a finite number of terms.
weA*

The set of non-commutative polynomials is denoted by K (A). Similarly, we
may define formal series in the same way, but the number of terms in the
sum is countable. The set of formal power series is denoted by K ({A)).

With A may be constructed a Lie algebra with bracket [a,b] = ab — ba for
all a,b € A. This Lie bracket may be extended to the set all non-commutative
polynomials P. The set K (A) is closed under [, -] and corresponds to the Lie
algebra generated by A.

Given this Lie algebra L, it is known that there a unique associative al-
gebra £(L) and a Lie algebra homomorphism ¢g : £ — £(L) such that for
all other associative algebra B and any Lie algebra homomorphism ¢ (i.e.,
[p(a), p(d)] = ¢([a,b]) for all a,b € L) from L to B, there exists a unique
algebra homomorphism f : £(£) — B such that ¢ = f o ¢g. The associative
algebra £(L) is called the enveloping algebra. So, any algebra homomorphism
from £ into some associative algebra B may be extended to an algebra homo-
morphism from (L) into B.

Denote by £k (A) the smallest submodule of K {A) containing A and closed
under the Lie bracket.

Proposition 5.1. The algebra K(A) is the enveloping algebra of L (A).

Given a Lie algebra L, its enveloping algebra £(L£) may be constructed by
quotienting the tensor algebra

T(L) = cen

n=0

by the ideal Z generated by the elements of the form x ® y — y ® = — [z, y] for
xz,y € L.

5.2 A characterization of the Lie polynomials

An element of Lk (A) is called a Lie polynomial. A formal series S that may
be written S = Zn>0 S, where the S,,’s are Lie polynomials is called a Lie
series.

Remark 5.1. To understand the difference between a Lie polynomial and an
element of K (A), consider the following example: If the elements of a tangent
space of a manifold are seen a first-order differential operators, then the Lie
brackets [z,y] of two of them remains a first-order differential operator and
then belongs to the tangent space. If the letters a; are identified with vectors
of a tangent space, a Lie polynomial belongs (formally) to the tangent space.
Yet an element of the enveloping algebra is a general differential operator,
with terms that could be of any order.
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Let & be the algebra homomorphism from K {({A)) — K((A)) x K{(A))
defined by §(a) =a® 1+ 1®a for all a € A. The existence of ¢ as an algebra
homomorphism is given by the property of the enveloping algebra.

Theorem 5.1. An element P in K{{A)) is a Lie series if and only 6(S) =
S®1+4+1®S. Furthermore, if S is a Lie series, then the constant term Sy
is equal to 0, where 1 is the empty word of A*.

From the condition on §(P), the Lie polynomials are also called primitive.
For a formal series S with zero constant term (S; = 0), the exponential is

defined to be gn
exp(S) = Z T
n=0
For a formal series of the form S = 1+ T where T have a zero constant term,
the logarithm is defined to be

D),
log(S) =log(1+T) = Z TT .

n>1
Theorem 5.2. The following properties hold:

(i) Let S be a series in K ({A)) with a constant term equal to 1. Then log(S)
is a Lie series if and only if 6(S) =S ® S.

(ii) The set of series in K((A)) with a constant term equal to 1 such that
log(S) is a Lie series is a group under multiplication.

An element in the group generated by exp(S) where S is a Lie series with
a constant term Sy equal to 0 is called group-like. Theorems 5.1 and 5.2 assert
that the map log is a bijection from group-like elements to primitive elements.

5.3 The series of iterated integrals is a group-like element

Now, take as alphabet A = (e, ..., eq), where eq, . .., ¢4 is the canonical basis
of V.= R? The ring K is R. The product of two words a and b is replaced
by the tensor product a ® b of a and b. Each of the e;’s corresponds to the
indeterminates X?, and this identification is used. That is,

t
Q([S’t]’z): Z €iy ®"'®6ik/ drz.

I multi-index S

T=(i1,emi,
Thus, the series @([0,t],2), which belongs to K((A)), may be seen as an
element of R® V ® V®2 @ ... . More precisely, for all integer k, the element
DI (i, in) G @ T ® €y [!drz belongs to VO, In Sect. 4.2, we have seen
that the concatenation of z : [0, s] — V and z : [s,t] — V creates a new paths
x : [0,t] — V characterized by the series @([0,¢t],x) given by the product of
&([0, s], ) and D([s, t], ). With our convention, (4.1) is rewritten #([0, ], z) =
&([0, s],z) @ D([s, t], z).



32 Antoine Lejay

Remark 5.2 (Another notation for the iterated integrals). If €}, ..., €} is the
canonical basis, identified with eq,...,eq, of the dual V* of V, then define a
multi-linear form f; dr®---®dron V¥ x .-+ x V" by

t
</ dx®--~®dz,(egl,...,egk)>—/ dog ---drd.
s 581 < <5<t

Thus, fst dr ® --- ® dz is an element of the dual of V* x --- x V*, which is
identified with V®*, and fst dr ® - - ® dz is identified with

t
Z 6i1®"'®6ik/dl«r~
S

I=(ityeonyin) E{ 1eersd }*

The following Proposition may be proved using the properties of the shuffle
product and the Campbell-Hausdorff formula, and links the series constructed
in Sect. 4 with our constructions of objects related to Lie algebras.

Proposition 5.2 ([5]). For any irreducible, piecewise smooth path x : [0,t] —
R%, &([0,t], ) is a group-like element when the elements e; of the basis of RY
are identified with the indeterminates X*. Moreover,

log#([0,4],7) = @,/dﬂ, (5.1)

I multi-index

where Or belongs to Lg(A) =00V [V,V]@®[V,[V,V]]&--- and does not
involve more that length(I) Lie brackets.

Remark 5.3. There are very nice algebraic properties that can be considered
on the series of type @([0, t], x). In particular, two structures of bi-algebra may
be considered, one corresponding to concatenation of paths, the other one to
product of the series and then using shuffle products (see for example [40,
Sect. 1]). See also [47] for an example of use of the Poincaré-Birkhoff-Witt
Theorem that gives a basis of Lie algebras.

6 (Geometric) multiplicative functionals

We have already encountered geometric multiplicative functionals in Sect. 3.3.
In this section, we give a definition of geometric multiplicative functionals of
any order.

Roughly speaking, a geometric multiplicative functional

_ 1 _ 2 k
X= (17xs,t =Tt — LsyXg gy 7xs,t)(s7t)eA+

lying above a path x corresponds to x together with its first “iterated inte-
grals”, and such that the iterated integrals x> = S dr’®- - -®@dz® of piecewise
smooth approximations 2° of z converge to x¢ for £ =2,... k.
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If = is a piecewise smooth path, we have seen that one can construct its
Chen series @([0,¢],2), which fully characterize x. Moreover, given a Chen
series of a path x, one could formally solve a differential equation controlled
by x or consider the integral of a one-form along the path z, by writing these
objects with the Chen series of x (For example, see Sect. 6.3 below).

If = is irregular, then knowing x is not sufficient to define its iterated
integrals (see Remark 3.1 and Sect. 6.2 for example). However, when one
knows a (geometric) multiplicative functional x = (1,x!,x2,...,x*) lying
above a path z of finite p-variation with k = |p|, then it will be proved that
there exists a procedure to extend x in a (geometric) multiplicative functional
(1,x',x2,...), and that this extension has some nice properties, especially
with respect to the topology of generated by the norm of p-variation. Thus,
one can construct an extension of the notion of Chen series for irregular paths,
provided enough information is known on the path, i.e., its first “iterated in-
tegrals”. And, in view of the results of Sects. 2 and 3, one will not be surprised
by the results of Sects. 8, where integrals of one-form along irregular paths are
constructed, and 9, where differential equations controlled by irregular paths
are solved.

For any integer k > 1, set

T(V)=RoVaVS2g...q Ve,

which is a truncated tensor algebra. Let also Ax(V) C Tx(V) containing all
the elements of A(V) =00V @ [V,V]@[V,[V,V]]&..., where all the terms
involving more than k Lie brackets are set to 0. Similarly, computations on
T, (V) are done by setting to 0 all tensor products involving more than k
terms.

The norm we choose on V®* is such that

lo1 ® -+ @ kllyer < o] x oo X |kl

This norm is also denoted by | - |, and there are different possibilities for
constructing such a norm (see for example [41]).

Definition 6.1. A multiplicative functional x = (x°,x!,...,x*) of order k
is a function from AT into Ty (V) such that

x: AT — Ty(V) is continuous, (6.1a)
Xot = Xsu @ Xy for all 0 < s<u<<t< L (6.1b)

Furthermore, x is said to be geometric if
logxs, € A(V), (6.1c)

and x99 = 1.
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Of course, in the previous definition, x* denotes the projection of x on V7.

The set of multiplicative functionals with values in Ty (V) is denoted
by 7 (V). The subset of 7|,(V) of of multiplicative functionals of finite p-
variation is denoted by MP(V). Let us also denote by GP(V) C MP(V) the set
of geometric multiplicative functionals of finite p-variation taking their values
in Ty (V).

Clearly, for a piecewise smooth path, xs; = D([s,t],z) is a geometric
multiplicative functional, and x;t = fst dz ® - ® dz. Denote by S*(V) the
set of geometric multiplicative functionals in Ty (V) lying above a piecewise
smooth path given by the projection of &(z) on Ty (V).

Definition 6.1 extends the one given previously by (3.7a)-(3.7¢), and (6.1¢)
replaces (3.7¢e). We will see below in Proposition 6.1 that these conditions are
equivalent, provided that MP(V) is equipped with the good norm.

6.1 A norm on multiplicative functionals

We use for multiplicative functionals in 75 (V) the norm

Il . = 2w (BTG/) 7 ar )1
and [[x||,, = |Ix[[, o,1- Here B is a positive constant, and I" is the Gamma

function. Note that [[x||, is finite for all ¢ > p as soon as [|x||,, is finite.
The space 7;(V) equipped with the norm |||, is complete, but not sepa-
rable.

Remark 6.1. Note that any rough path x lies above the path x defined by
x4 = Xo,¢- For such a path, g = 0, and Var, o 1) is a norm on this space of
functions from z : [0,1] — V with 2o = 0, and not only a semi-norm.

Definition 6.2. We say that x in T;(V) is of finite p-variation controlled
by w : At — Ry (satisfying Assumption 2.1) when Hx||p s S w(s,t) for
all (s,t) € AT.

Lemma 6.1. A multiplicative functional x in T (V) is of finite p-variation
controlled by w if and only if

w(s, )?
BL(i/p)

Moreover, Lemma 2.8 also holds for multiplicative functionals: If (X™)nen 48
a sequence of multiplicative functionals converging to x in ||-||p, then there
erists an w : AT — R, satisfying Assumption 2.1 such that x™ (or possibly
only for the element of a subsequence of (X™)nen) and x are controlled by w,
and for all € > 0, there exists some n such that for all m > n,

w(s, t)i/p
BI(i/p)

il < fori=1,... k. (6.2)

|Xg?£i - Xi,t| <e€

(6.3)
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Let x be a smooth path, and x be its associated geometric multiplicative
functional, i.e., xi,,t = fst dr ® - - - ® dz. Hence, there exists a constant C such
that [x%,| < C(t — s)"/i!. Thus, the choice of the norm |||  is coherent with
that fact that a smooth function is controlled by w(s,t) = C|t — s|.

We said earlier that (6.1c) replaces (3.7e). In fact, the two hypotheses may
be seen as equivalent.

Proposition 6.1 ([32, Lemma 2.3.1, p. 259]). The space GP(V) is the closure
of SWI(V) (i.e., geometric multiplicative functionals lying above piecewise
smooth trajectories) with respect to ||| ,.

Practically, geometric multiplicative functionals will be constructed by ap-
proximating irregular trajectories by piecewise linear functions whose iterated
integrals converge. This is why (3.7e) is generally more useful than (6.1c).

Lemma 6.2 (A convergence and compactness result). Let p be a fized
real number. Let (X")nen be a family of multiplicative functionals in Ti(V)
such that for some ¢ <p and for i =1,...,k,

Ve >0, 31> 0 such that |s —t| < n = |x2t’| <e, (6.4a)
sup Var (x™') < +oo. 6.4b
nGII\)I Q/i7[071]( ) ( )

Then there exist a subsequence (ng)een and a multiplicative functional x
in T (V) such that
x™ —x 0
| ||p P
In other words, (x")nen is relatively compact in (Tx(V), ||||,,)-
Moreover, if x™ lies above a path x™ and (z{)nen is relatively compact
in R, then any possible x limit of (X"™)nen lies above a path x, which is also
a possible limit of the sequence (z™)nen in the space of continuous functions.

Remark 6.2. In particular, (6.4a) and (6.4b) are true if (x{)nen is bounded
and there exists a function w satisfying Assumption 2.1 such that [|x"||, (s8] S

w(s,t) for all (s,t) € AT and any n € N.

Remark 6.3. Thanks to the Ascoli theorem and the relation (6.1b), the con-
dition (6.4a) is also equivalent to saying that the sequences of functions
(t = xg{)nen are relatively compact in the space of continuous functions
for i = 1,...,k. This is a fact we use in the proof of this Lemma.

Proof. If y is a multiplicative functional in 7;(V), (6.1b) implies that for all
(s,t)e AT andi=1,... Kk,

) ) k A
Yot =Yo,s T E Yo,5 @ Vs - (6.5)
k=i >1

Hence,
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- .
Yo =Yool < D v,
k+0=i,0>1

i
<Oyl > I¥es
/=1

’ |Y§,t|

<Y o 131,15,

where C' depends only on ¢ and 1. ‘

With (6.4a) and (6.5), it is clear that (¢ +— x’/)nen is bounded and equi-
continuous for 4 = 1,..., k. Thus, Ascoli’s Theorem implies that there exists
a continuous function ¢ — X € R+ +-+d" gych that, at least along a
subsequence, t — Xg , converges uniformly to ¢ — xo .

Using (6.5) recursively, one can construct from ¢ — x¢; a function (s,t) €
AT — x4, that is a multiplicative functional and such that, at least along a
subsequence, X ; 7 Xst uniformly in s and ¢.

It is now easily seen that Var,,;(x') < liminf, . Var,,(x™") for i =

1,..., k. Thus, x is of finite p-variation. With a variation of (2.8), one obtains
that for all p > ¢, [[x —x"||, (s,] 80€s to 0, at least along a subsequence.
The second part of the Lemma is clear from Ascoli’s Theorem. g

Corollary 6.1 (A tightness result). Let (X"),en be a family of random
variables taking their values in Ti(V). Assume that the family of stochastic
processes (Xg 5t € [0, 1])nen is tight in the space of continuous functions with
the uniform norm, and that for all € > 0, there exists some constant C' large
enough so that
sup[P’[HXan >Cl<e (6.6)
neN

for some real number q > 1. Then (X), is tight in (Tu(V),||l,) (hence in
MP(V) if k= |p|) for all p > q.

Remark 6.4. Since (7x(V), ||-[,) is not separable, a sequence (X")nen may be
tight in this space but fails to satisfy (6.6).

Remark 6.5. Owing to (6.1b), the tightness of (t — Xg:ti)neN for all 7 €
{1,...,k} is equivalent to saying that for all ¢ > 0 and any C > 0, there
exists some 1 > 0 small enough such that

sup sup P| sup [XP}|>C| <e.
neNi=1,...,k [t—s|<n

Proof. The proof is immediate from Lemma 6.2 and Remark 6.5, since the
subsets K of 7;(V) of the form Ky N K; for a given C' > 0 are relatively
compact in (7 (V), [|-[|,,), where the sets of functions (¢ — X{ ¢ )xek, are equi-
continuous for ¢ = 1, ...,k and K; contains the multiplicative functionals such
that supye g, [|x[|, < C for some g < p and a given constant C.
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6.2 Back to the case 2 <p < 3

To provide a better understanding of what a geometric multiplicative func-
tional could be, consider a multiplicative functional x in 72(V) with V = R%.
Set

1
Gsi(x) = 3 x;t ® x;t and 2 4(x) = xit — G, (x).

Thus, A(x) = (A"7(x))i j=1.....a With Q(m( ) = %(xif 27:4) Remark that
S(x) and A(x) are respectively the symmetric part and the antisymmetric
part of x2. Moreover, G(x) depends only on x!, and if x! lies above a path x,
then &(x) = &(x). Moreover, if  is of finite p-variation, the map = — &(z)
is continuous for the topology generated by Vary, s 15.4(-) + |||l

On the other side, if x is a natural geometric multiplicative functional in

S2%(V) lying above a smooth path z, then Q[;jt (x) is the area contained between

the curve (a%,24),¢[s, and the chord (zi,21)(x¢,2]). Denote also this area
by 205 ().

Lemma 6.3. For all 0 < s <t < 1, the map z € S*(R?) — A, () 4s not
continuous with respect to the uniform norm (except if d =1, in which case

Q‘s,t(«r) = 0)

Proof. Assume that d = 2 and identify R? with the complex plane C. Set
.2
zf =n~te™ . Then, g 2. (z") = 7, but 2" converges uniformly to 0. O

Thus, to construct a geometric multiplicative functional x lying above x of
finite p-variation with p € [2,3), one has to focus only on the construction of
the antisymmetric part 2(x) of x. This also provides us a with nice geometric
interpretation. However, note that this choice is not unique.

Lemma 6.4. If x is in GP(V) for p € [2,3), and ¢ = (¢; ;)i j=1,...d IS a func-
tion from [0,1] to d x d-antisymmetric matrices, and of finite p/2-variation.
Then X defined by

Rie =Xy, and X7 = X007 + i (1) — 0i(s).
Then X is also in GP(V).
Proof. If x is a geometric multiplicative functional, and ey, . . ., e4 is the canon-

ical basis of V = Rd, then rewrite x,; as

xst—1—|—Zel Zel@)ej st .

3,j=1

The quantity log(xs,.), which belongs to A3(V) (see (6.1c)), may be explicitly
computed:
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log(xs,.) = Zex + = Ze,,e]

i,5=1
where [e;,e;] = €; ® ej — e; ® e; is the Lie bracket of e; and e;. It is clear
that X is a multiplicative functional in MP(V), and as ¢ is antisymmetric,
ie., Pi,j (t) = —QOj,i(t) forall t € [O, 1],

d
log(Re) = log(xs,) + 5 3 et €51 (1) = 15(5))

t,j=1

Thus, log(Xs,¢) belongs to A5(V) for all (s,t) € A*. Then, X belongs to GP(V).
O

We have then a way to construct as many geometric multiplicative func-
tionals lying above a path x as we want. The difference between the geometric
multiplicative functionals y = [ f(zs)dxs and y = [ f(z,) dX, is immediate
in view of (3.9a)-(3.9b):

ySt YSt+Z/ afl (z d@/}“()

3,j=1
and 52, = y2, + / fan) ® flar) - du(r).

In Sect. 10.2 below, these results will be used to compare the theory of integra-
tion given by this theory and the Stratonovich integral for Brownian motion
(see especially (10.2) and (10.3)).

The fact that ¢ was taken additive (i.e., ¢(s,u) + @(u,s) = @(s,t) for
all0 < s <u<t<1)in Lemma 6.4 is justified by the following Lemma.

Lemma 6.5 ([32, Lemma 2.2.3, p. 250]). If x and X are two multiplicative
functwnals in MP(V) which agree for all order smaller than k = |p| (i.e.,
xt, =%XL, fori=0,1,...,k—1), then o(s,t) = xF, — Xk is additive, and
18 of ﬁmte p/k- vamatwn

6.3 Intermezzo: solving linear differential equations

It is now time to justify the usefulness of geometric multiplicative functionals,
and the choice of the semi-norm ||-[|,, ; -

Assume that x is a piecewise smooth path, and that x is its Chen series
(in 7 (V), i.e., consider all its iterated integrals).

Let C be a m x m-matrix and assume to begin with that d = 1. Then it
is well known that the solution of the differential equation dy; = Cy; dx; is
yr = exp(Czy)yo, where exp is the exponential of matrices.

Now, consider a family C, ..., Cq of m x m-matrices, and the differential
equation
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d
dy; = Z Cyys dat. (6.7)
i=1

As y appears in the right-hand side of (6.7), one may replace it by its value
given by (6.7). Thus,

d t d
ye = ys + Zcz-ys/ dzi+ / CiCjys dat. dad,.
=1 S s

i,j=1 <ri<ra<t

For a multi-index I = (41,...,4), set C; = C;,Cy, -+ C, .
Re-iterating the substitution, one obtains the formal power series

Y = <1d+ Z C /t d1x> Ys. (6.8)

I multi-index

As the C;’s appear at the same place as the indeterminates X* in the formal
Chen’s series &(]s, t],x) of z, (6.8) may also be written, using (5.1),

t
yt—eXP< Z 91(017"'a0d)/ d]l’) Ys,

I multi-index

where O;(C1,...,Cy) is a linear combination of terms in the smallest space of
matrices containing { Cy, ..., Cy } and closed under the Lie brackets [4, B] =
AB — BA.

Of course, one may wonder if the series

t
E@)=1d+ > CI/de

I multi-index
converges. But there are ¢ multi-indexes I of length 4, and ||Cy|| < ¢ =
(sup;—; 4 lICID)". As ‘fst dm;‘ < Ot — s|*/i! for some constant C' which de-

pends on the bounds of the derivatives of x, then

oo 4 4 i
_ d'é|t — sl
IE@) <) — g <+
i=0
Thus, using the condition that a rough path x is of finite p-variation con-
trolled by w, one may construct the solution y of

d
dys = Y Ciyedxyy, for t > s, (6.9)
=1
by setting

yr = (Id + Y Cfngﬁgt“’f> Ys- (6.10)

I multi-index
Inequality (6.2) implies that the series that appears in this expression is con-
vergent, in the sense of the norm of operators.
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6.4 Extending multiplicative functionals to any order

We have defined geometric multiplicative functionals as elements of the “trun-
cated” tensor algebra T (V), while an expression like (6.10) requires to know
a geometric multiplicative functionals in the tensor algebra 7, (V). Does one
need to know all the terms of a geometric multiplicative functional?

Theorem 6.1 ([32, Theorem 2.2.1)). Let x be a multiplicative functional
in T, (V), where k = |p| for some p > 1. Assume that there exists a function w
satisfying Assumption 2.1 such that for all (s,t) € AT,

i w(57t)i/p
%5l < oD (6.11)

fori=1,... k. Then, if (3 is large enough (however, the choice of 3 depends
only on p), for all integer ¢ > k, there exists a procedure to construct a
multiplicative functionaly € T;(V) extending x (i.e., X' =y fori=1,...,k)
and satisfying (6.11) for i = 1,...,£. Moreover, the extension y of X given
by this procedure is unique.

Proof (Sketch of the proof). The idea is to construct y© e 7¢(V) recursively,
by setting y*) = x € 7;(V) and, once y® has been defined, set z(*+!
in 711 (V) by 20+ = y(O 4 Z(ih.. 0-e;, @egq1. Thus, y“+1) is defined

ie41)

by
(£41) i (£+1) (£+1) (6+1)
= lim z Rz ®---®z
st 50 to:t £3.43 st

where 10 = {tf | s < tg <K tfg < t} is a partition of [s,¢] whose mesh
goes to 0 as & decreases to 0. Thanks to the multiplicative property of y (),
remark that y¢*t17 = y(O:i for § = 1,... £ In fact, this idea was already
used in the proof of Proposition 3.2, and will be used later in the proof of
Theorem 7.1. In Ty(V), the extension of x is then y(©). O

This Theorem means that there exists a function ¥, transforming multi-
plicative functionals in MP (V') to multiplicative functionals in 7o, (V). There
are many ways to extend a multiplicative functional. For example, if ¢ is
a smooth function with values in V®2, then (1,0,¢(t) — ¢(s))(syea+ be-
longs to M?(V) and extends the multiplicative functional (1,0). But the
function ¥; applied to smooth paths yields the series of iterated integrals,
ie., ¥1(z)s = D([s,t], z). Moreover, the next Theorem states that ¥, is con-
tinuous on MP(V). So, given a multiplicative functional x € MP(V), we call
v, (x) its extension.

Theorem 6.2 ([32, Theorem 2.2.2]). Let x and y be two multiplicative func-
tionals in T, (V) satisfying the hypotheses of Theorem 6.1 for the same w.
Assume that there exists a constant [ large enough (depending only on p)
and a constant 0 < e < 1 such that
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. . (.L)(57 t)i/p .
X, — Yoyl Se 5=~ fori=1,... k. 6.12
| ,t ,t| 61—1(2/19) ( )
Then, their extensions X and y to Too(V) given by Theorem 6.1 also sat-
isfy (6.12) for all integer i.

In view of Lemma 3.1, this means that the map giving the extension
of a multiplicative functional in 7,|(V) is continuous with respect to the
norm ||-[[,,.

Combined with Proposition 6.1, this means that the extension of a geo-
metric multiplicative functional in GP(V) to 7;(V) is also a geometric multi-
plicative functional in this space for all £ > |p].

Using Theorem 6.1, if x is a geometric multiplicative functional in 7|, (V)
of finite p-variation (i.e., [|x[|,, is finite: there is no difficulty to find a function w
such that x is controlled by w), then one may solve (6.9) by density using (6.10)
and the previous Theorem.

The idea behind Theorem 6.1 is that the more irregular is a trajectory
(“rough”), the more “iterated integrals” have to be considered. But on the
other side, once one knows enough iterated integrals, then the whole set of
iterated integrals could be known. Hence, when one deals with a path x of finite
p-variation, then he needs to know a geometric multiplicative functional x
lying above = and belonging to the truncated tensor algebra 7', (V).

7 Almost multiplicative functionals

When p < 2, the geometric multiplicative functionals we consider are x;; =
(1,x{,), with x} ; = 2; — x for a continuous path of finite p-variation. In this
case, we have defined integrals of the type fst f(x,) dz, for Holder continuous
functions f, which are, as we have seen, of finite p-variation. This integral is
a multiplicative functional in MP(W), since from Chasles’ relation,

/Su f(xr)dxr+Atf(xr)dxr_/:f(xr)dxr_ (7.1)

However, we have seen that [ f(z,)dz, may be constructed as limit of Rie-
mann sums, and for that, we have used the approximation

Yo = f(@s) (e — 24) =~ / F(zs) dan.

Of course, (ys,¢)(s,yea+ fails to satisfy (7.1), but the error 5 vt = Ys,t — Ys,u—
Yu,+ Was easily controlled. And the estimate on ., was the key of the proof
of Proposition 2.1. So, (ys,¢)(s,nea+ may be called an almost multiplicative
Sfunctional.
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Definition 7.1. A continuous function x : AT — Ty (V) for some integer k is
called an almost multiplicative functional if it is of finite p-variation controlled
by w (see Definition 6.2) and, for i =1,...,k,

|(Xot = Xeu @ Xut)'| < Kw(s, t)? forall0 <s<u<t<1. (7.2)
for some 6 > 1 and some constant K.

Thus, an almost multiplicative functional fails to satisfy (6.1b), but the
error is in some sense close to a multiplicative functional.

Theorem 7.1 ([32, Theorem 3.3.1]). Let x be an almost multiplicative func-
tional taking its values in Ty (V) with finite p-variation controlled by w. Then
there exists a unique multiplicative functional z in T(V) such that for all
(s,t) € AT, there exists a constant C depending on K, 6 (defined by (7.2)),
the degree k and the control w(s,t) such that

(X — Zrw)'| < Cw(r,u)? fors<r<u<tandi=1,... k. (7.3)

Furthermore, there is at most one multiplicative functional z in T, (V) satis-

fying (7.3) regardless of the choice of C.

Proof (Sketch of the proof). The idea was already used in the proofs of Propo-
sition 3.2 and Theorem 6.1: Construct z by setting z° = z(®) = 1 and recur-

sively for £ =1,...,k, ygz = zﬁf{l) —|—x§,t, where 2~V = (20,21, ... 2" 1) €
To—1(V). Hence, define 29 € T,(V) by
O _ 10 O )
Zot = MYy Oy @ O
where 110 = {tf | s < tg <K tfg < t} is a partition of [s,¢] whose mesh
goes to 0 as & decreases to 0. The multiplicative functional z is then z(¥). O

8 Integration of a one form

We now have all the elements to define an integral like fg f(xs) dxs against
a geometric multiplicative functional x € 7|,,|(V) of finite p-variation for an
arbitrary p > 1. We want this integral to belong to T}, (W) if f is a one-
form taking its values in a Banach space W, and in fact that (s,t) € AT —

J2 f(2;) dx, belongs to G7(W).
8.1 Lipschitz functions

The notion of Lipschitz functions we use is that of E.M. Stein (see for example
the book [44]).
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Definition 8.1. Let F be a closed subset of the normed space U, and o > 0.
Let W be a separable Banach space, and [ a function with values in W.
Assume that k < o < k+ 1. Then f belongs to Lip(a,F, W) if there exist
some functions f7 where J is a multi-index of length length(J) < k and some
functions Ry : F x F — W such that for all z,y € F,

S OBt~y = )

P@-r'w=" 3% o

L:(‘€17"'7Z7n))
length(J,L)<k
+ RJ (1177 y)7

where (J,L) denotes the concatenation of the multi-indexes J and L. By
definition, f2 = f. The functions f” shall satisfy

|7 (@) < M and |Ry(z,y)| < Mz —y|* 7' (8.1)

for all z,;y € ¥ and any J with length(J) < k. Denote by | fl|y;, the small-
est M such that (8.1) is true. With this norm, Lip(a,F,W) is a Banach
space.

This definition requires some comments. If F = V = R?, then the functions
in Lip(a,R?, W) are from R? to W with bounded derivatives up to order

|a]. Moreover, f(tsi) = axila-t%%%’ and fOr-i9)) s (o — |a])-Holder
continuous.

If F is a strict subset of R, then a function f € Lip(a,F, W) may be
extended continuously to a function in Lip(a, R?, W), but the family of the
f7’s is not necessarily unique. In this case, by a function f in Lip(a, F, W),

we denote not only f, but the whole family (f7) multi-index, length(J)< o) -

8.2 Integration

To start with, let f = (f1,..., fa) be a smooth function defined on the Banach
space V = R?. The idea to define f(f f(zs) dxs is to construct an almost multi-

plicative function y such that y, ; gives a first approximation of fst f(z,) da,,
and then to transform y to a geometric multiplicative functional using Theo-
rem 7.1.

The value of y, ; will be computed as previously using a Taylor expansion
of f when it is assumed that x is smooth. So, in a first approach, assume that x
is piecewise smooth and that x is the geometric multiplicative functional given
by its iterated integrals.

Set

k t
-y =yl =Y 3 0,1 [ dis
J=1TI multi-index, I=(i1,...,i;) §
j—1f.
with ©7(f)(xs) = M(xs)

&vij L 8xi2
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Once this is done, one may define yJ for j = 2,...,k using the iterated
integrals of y: y;t =/ multicindex I=(i1,.nri) fst dry. But this involves expres-
sions such as

S1 Se
S(Jl,...,J[):/ d(/ dJll‘>d</ dJZI),
ER I RN 0 0

where Ji,...,Jy are themselves multi-indexes. But it is possible to express
such a sum S(Jp,...,J¢) as the sum of

t
S(J17"'7J5): Z EK/ dKI,

K multi-index,
length K=length(Jy)+---+length(Jy)

where e € {0,1} (see [32, Predefinition 3.2.1, p. 283]). Denote by Jyo---oJy
the set of multi-indexes K that appear really in the previous sum, i.e., for
which e = 1.

Definition 8.2. Let x be a geometric multiplicative functional of finite p-
variation lying above a path x, and let f be a differential form in Lip(ca, V, W)
for some o> p—1, that is, v € V — f(-)v is linear and for all v € V, f(-)v
belongs to Lip(a, V, W) for some a > p — 1. The integral fot flzs)dxs of f
along the path x is defined to be the geometric multiplicative functional of finite
p-variation given by Theorem 7.1 corresponding to the almost multiplicative
functional

yg,t = Z Z D‘]l(f)(xs)®"'®gli(f)(xs)xl;i?gth(l()’l(.

J1,...,Ji multi-indezes, KeJio---od;
length(J1)+---+length(J;)<k

Here, © ;(f)(x) is defined by to be an element in the dual of V@) (yith
values in W): If eq,...,eq is the canonical basis of V and €f,... e} is its
dual basis, then

D (1 @) = £ (@)el, @ @l
Theorem 8.1 ([32, Theorem 3.2.1, p. 285]). Definition 8.2 is valid, i.e., the
definition of y gives rise to an almost multiplicative functional, which is con-
trolled by Kw if x is controlled by w, where the constant K depends only

on a, p, HfHLip and Sup(s ;e a+ w(s,t). Moreover, x — [ f(xo + x(l),s) dx, is
continuous from GP(V) to GP(W).

9 Solving differential equations

We can now consider solving differential equations of the form
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Yr = a+/0 f(ys) dxs, (9.1)

where x belongs to GP(V), and y; belongs to a Banach space W for all ¢ >
0. Thus, f is a differential form, such that for all v € V, f(-)v belongs to
Lip(a, W, W) for some @ > p — 1.

Equation (9.1) will be solved using Picard’s iteration principle: Construct
a sequence (y")nen by y7 T =a + fot f(y™) dxs, and prove that y™ converges
to some element y. But such a principle requires that y™*! and y" belong

to the same space. So, consider some multiplicative functional z = (x,y) in
71y (V& W), and define

R(z) = /h(:l:o + x(1)7s, a+ y(l)ﬁ) dz,,

where h(z,y) is the differential form h(z,y) = > fi(y)da®. Thus, Picard’s
iteration principle will be applied on elements of 7|, (V & W).

Definition 9.1. The solution of (9.1) is an extension z in GP(V & W) of
x € GP(V) such that z lies above (z,y) with (zo,yo) = (zo,a) and z satisfies
z = R(z).

Note that although the projection y on GP(W) of z can be seen as the
solution of (9.1), z also keeps track of the “interactions” between x and y
using the iterated integrals.

Theorem 9.1 ([32, Theorem 4.1.1, p. 298]). If f is a linear form on V with
values in Lip(a, W, W) for some a > p — 1, then there exists a solution
to (9.1) when x belongs to GP(V). Moreover, if f is a linear form on V with
values in Lip(a, W, W) for a > p, then this solution z is unique, and the map
J: x> 2, called the Tt6 map, is continuous from GP(V) to GP(V & W).

Remark 9.1. To prove the existence of a solution under the assumption that f
belongs to Lip(a, W, W) with o« > p — 1, one only has to act as in Step 2 in
the proof of Theorem 2.1: In Step 3 of the proof of Theorem 4.1.1 in [32], it is
proved that the paths y™ given by the Picard iteration principle are of finite
p-variations controlled by the same w. Hence Lemma 6.2 can be used.

10 A practical example: Brownian motion

We show in this section how the theory of rough paths may be used to define
a stochastic integral against Brownian motion. It is well known that almost
surely, a trajectory of Brownian motion is a-Holder continuous for all a < 1/2.
Thus, a trajectory of Brownian motion is then of finite p-variation for all p > 2.

Given a Brownian trajectory B(w), the main difficulty is to create a ge-
ometric multiplicative functional B(w) lying above B, where the Brownian



46 Antoine Lejay

motion is defined on a probability space (£2, F,P) and lives in V = R In
view of Proposition 6.1, one has only to construct a piecewise smooth approx-
imation B®(w) converging to B(w) as § — 0, and to study the convergence of
B’ with B"®(w) = B%(w) and

t

BLw) = [ Bi%(w)dBI(w)
S

But we know that: (i) The limit of B?%79 depends on the choice of the

approximation. (ii) When it converges, B2*7:9 does not converge almost surely

but only in probability or in L#(P) (however, it is proved that for dyadic

partitions, the convergence may be almost sure. See [24] for example).

Point (ii) is contained in the classical result from E. Wong and M. Zakai
in [51] for some piecewise linear approximation of the Brownian motion, while
point (i) is related to the extensions of such a result (see [19, Sect. VI,-7,
p- 392] or [22, Chap. 5.7, p. 274] for example). In fact, the problems with
(i) are similar to the results given in Sect. 6.2: There are different geometric
multiplicative functionals lying above the same path B.

10.1 The “natural” choice
The natural choice for B® is given by
Bf(w) = Bti (w) + (ti+1 - ti)_l(t - ti)(Bti+1 (w) - Bti (w)) (101)

for t € [t;,tir1], where IT° = {t;]0<t; <--- <t <1} is a determin-
istic partition [0,1] whose mesh goes to 0 with 6. It is clear that B°(w)
converges uniformly to B(w). We have seen at the end of Sect. 2.3 that
Varg (0,1)(B°(w)) < 3 Vary o,1)(B(w)) for all ¢ > 2. According to Lemma 6.2,
B?(w) converges in the topology generated by Var,, jo.11(-) + |||, to B(w) for
all p > 2.
For such an approximation, we know that

4,6 uniformly in (s, t) € AT

2,4
Bs7t

t
BN Bl [ () - B)ean;

in probability. Here, the stochastic integral is a Stratonovich integral. We prove
below in Sect. 11.2 that B? converges to B in the topology generated by IIIl,,
if the partitions IT° are dyadic. Thus, for this choice of B2, the geometric
multiplicative functional B belongs to GP(V) for all p > 2.

Now, let f be a linear function on V taking its values in Lip(c, V, W)
for some o > 1, with W = R"™. A direct consequence of Proposition 3.1 or
Theorem 8.1 is that X, ; = fst f(By)dB, is well defined and belongs to G (W)
for all p € (2,1 + «).

Remark 10.1. A practical feature of the theory of rough paths is that X is
defined on a subset {29 C {2 of full measure whatever the function f is.
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Let X be a path such that X lies above X, with Xy = zg. Then, a direct
consequence of Theorem 8.1 is that

t -
X8 = a0+ / F(B?)dB? —>pr°:ab;“y X,
O —

the convergence holding with respect to both the uniform norm and the norm
of p-variation. But from a theorem of Wong—Zakai type, it is also known that
X converges in probability to x -+ fo s)odBs. Thus, this integral is almost
surely equal to X. There is in fact a deep relatlon between the Stratonovich
integral and the one given by the theory of rough paths.

10.2 Stratonovich integrals and rough paths theory

We develop in this section the link between stochastic integrals given by the
theory of rough paths and Stratonovich integrals for Brownian motion. It also
explains the influence of the term B2, where B is a geometric multiplicative
functional lying above the Brownian motion, but different from the one given
by the “natural” construction of Sect. 10.1. Note that such geometric multi-
plicative functionals may arise naturally. For example (see e.g., [26, 28] in the
homogenization theory), there exist some families (X¢).~¢ of semi-martingales
converging, thanks to a central limit theorem, to a Brownian motion B, but
such that A, ;(X*¢) converges to As+(B) + c(t — s) for some matrix c.

By definition, the Stratonovich integral fg 1(Bs)od B! is the limit in prob-
ability of

(B]

tiy1

k—1
5 def (f'(Btz‘Jrl) + f(Btz))
78 <= ; J 5 J

- (f] (Bti+1

i=1

) — fi(Bi))
2

= ij(Bti)(Bng - Bgl) + (Bgi+1 - Bgz)’
=1

where IT° = {t; |0 <t <+ <t <t} is a deterministic partition of [0, ¢].
The functions f belongs to Lip(a W, W) with @« > 1. Let p € (2,1 + «)
be fixed. By definition, f;(z) — f;(y) = Ez 1 gg{;( — 2% + Rj(x,y) and
R;(x,y) < |y — z|*. Thus,

k—1
I8 — Z fi(B)(Bi,,, — Bl)
i=1
k—1
1 df; .
+ 5 Z E(Bt )(BfH»l Bf'i)(BgH»l Bil) + 557

with
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k—1
55 = ZRj(BtMBtHl)(Bng - Bgl)
=1
k—1

CZ ‘tﬁ_l —t; ‘ (a1)/p < Ct sup ‘ti-&-l _ ti‘(oﬁ”lfp)/P 0.
i=1 =1,...,k—1 5—0

This constant C' is such that |B; — B,| < CY 1+ |t — 5|'/P for the considered
trajectory of the Brownian motion.

Now, let B be a geometric multiplicative functional lying above B. There
is no necessity to choose the previous one, and we have seen in Sect. 6.2 how
to construct as many areas as we want. Then

(B‘

tiy1

tiy1

2,05 0
- B] ) Btl,t;7+1 - Q‘ti‘?t,H,l (B)7
where 2A(B) is the antisymmetric part of B2. Moreover, we have seen that
Z] " Zf 11 1 (B, )(BJLH - Bl )+ égi’e (B, )B?@ZHrl converges almost surely
to X; — Xo, where X is the path above which [ f(B;)dB; € GP(W) lies. So,

we deduce that

The limit defining 9Q;(B) is a limit in probability.

Remark 10.2. Using the antisymmetry of Qle’] 1(B), one has

N L AT
Dt(B) = %E}r(l)ﬁ Z Z <a_l'j( - 8_%) (B )mtl,tpr] (B)

Thus, if g'—Z - 27’2 = 0, 2:(B) = 0, then X depends only on B and not
on the choice of B2. In particular, this is true if f; = g—i for some function
F. In such a case, this could be shown directly, if (B?)ss¢ is a family of
geometric multiplicative function lying above an approximation B? of B and
converging to GP(V) to B, then the change of variables’ formula reads: F'(B?)—
F(BY) = [} fi(BS)dB?S. Thus, F(B}) — F(B]) converges to F(B,) — F(Bo),
while fg f:(B2)dB? converges to X;.

Now, if B" is the “natural” rough path lying above B (see Sect. 10.1),
then Q(e’] J(B™?) is the Lévy area AZ’]( B) of the 2-dimensional Brownian mo-

tion (BT7 Bi),¢[s,4), i.€., the area enclosed between the curve of (B, BY) and
its chord:
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. 1 t ) Lo )
A = g ([t Bheasi - [ (1 - Boant).

The result given at the end of Sect. 10.1 implies that Q;(B®?*) = 0 almost
surely.

Moreover, one knows from Sect. 6.2 that there exists a function ¢
(©i,5)ij=1,....a from [0, 1] to the space of antisymmetric matrices (i.e., ¢; ;(t) =
—p;i(t) for all t € [0,1]) and of finite p/2-variation such that 2, ,(B) =
As1(B) + ¢(t) — ¢(s). We deduce that

To summarize, if B® is a piecewise smooth approximation of B such that
(1,B°, i dB° ® dB®) converges to the geometric multiplicative functional B
in GP(V), and U, ((B) = As 1 (B) + ¢(t) — ¢(s), then we obtain directly that

/ f B6 dBé probablhty / f odB + Z/ a 9057]()

7,4=1
_ [ L~ ['(0f;  of
_/O f(Bs)odBs + Ejgl/o (a—;@ - a—x]) (Bs)dye,j(s). (10.2)

When one considers the solution Y in W = R™ of the ordinary differential
equations

t
Y? = yo + / F(Y2)dB?,
0

then Y7 converges in probability to the solution Y of
t
Y=yt [ F(VedB,
0

+% Z /(gZ af]fk) (Yy) depp,e(s). (10.3)

Zkl

Here, the drift term is different from the one in (10.2), since it comes from
the cross iterated integrals of the type [ dY ® dB, which may be computed
first for smooth paths, and then by passing to the limit.

Thus, the theory of rough paths provides us with some new light on the
results presented in Sect. VI-7 in [19, p. 392] (see also Historical Note 5 below).
In this book, the results concern the case where ¢, ;(t) = c¢; where ¢ =
(Cg,j)(7j:17,,,’d is an antisymmetric matrix, whose terms are given by

1 [/ : ° 1 :
v, = lim e8| [ B0 i - [0 ant?) < i BT ().
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where B°(w) is given by an interpolation of B(w) sampled at points 0, d, 26, . . .
The matrix ¢ depends on the way the trajectory is interpolated.

Remark 10.3. In the construction of the Stratonovich integrals, it is important
that the partitions IT° are deterministic. If not, a drift term may appear, which
may be computed using the expression of Q;(B). This result has also been
widely used to construct approximations of solutions of SDEs using partitions
whose meshed goes to 0 at a speed that depends on the considered trajectory
of the underlying Brownian motion (see for example [16]).

10.3 It6 stochastic integrals

When one constructs integrals, only the fact that x is multiplicative is used.
The fact that x is geometric is not really used, except that it allows us to
construct first the objects for smooth paths, and then to deduce what the
result should be for general geometric multiplicative functionals. It is the way
the integral was defined in Sect. 8. However, when p < 3, as we have seen in
Sect. 3, one may directly set, given a multiplicative functional x,

yi,t:f( ) st+vf(x8) sta’ndyst_f(xs)@f(xs) st7

and prove that y = (y!,y?) may be transformed into a multiplicative func-
tional denoted by [ f(zs)dx,. Moreover, the map x — [ f(zo + Xo,s) dx; is
continuous in MP(V).

For a N-dimensional Brownian motion B, we know that

t ¢
/ (B. — B)odB! = / (B, — B,)dBI +6; ;(t — s)

where §; ; is the Kronecker symbol. Thus, one may define a multiplicative
functional Bit6 c Mp( ) by (Bité)li _ Bz Bz (Bit6)2 ] (Bnat)Q ]
8;,;(t—s) and define the (pathwise) Itd stochastic integral to be [ f(B,) dBi®.

Remark 10.4. Of course, [ f(B,)dB; and [ f(Bs) dBI® are defined pathwise,
but pathwise means pathw1se with respect to B” and not pathwise with
respect to B”. And the definition of B from B is not pathwise, and requires

that some stochastic integration, here of It6 or Stratonovich type, is already
defined.

11 How to compute p-variation?

It is generally difficult to compute the p-variation of a function. We give in this
section a trick which has been introduced in [17] and allows us to compute the
p-variation of a multiplicative functional x provided one has a nice estimate
on |xJ,_, (i1)2- J|P/7 forj =1,..., |p], for all integers n and i = 0,...,2" —1.

We give an example in the case of the Brownian motion, that allows us
to complete the results of Sect. 10.1. In fact, this approach was successful in
many cases: See [38, 3, 24, 1, 27] for various applications.
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11.1 Using dyadics

For any integer n and any k = 0,...,2", set t} = ¢/2", that is (¢} )k=0,...,2n is
the dyadic partition of [0, 1] at level n. Let (s,t) belongs to AT, and construct
recursively a sequence (Sm,)mez, m=o0 of elements in (t};)neN k=0,...,2n Dy the
following way: Let ng be the smallest integer such that [t,°, ¢ ,] C [s, ] for
some integer k. set s_; = t;° and s; = th’H. Hence, construct s, for m > 1
by setting, if s,, < t,

m=mf{n>nnm_1|FkeN, tfm =t,"", ', <t}.

Denote by s,, the value ¢} 1, where k is the unique integer for which tym =
ty" " and t7, > t. If 5, = ¢ then s, =t for all n. > m.

Construct s, for m < —1 using a similar procedure, where s,,, decreases
to s instead of increasing to t.

This construction ensures that the sequences (N, )men and (Nm)mezs, m<o
are increasing, and

[s,t] = - U[S—m—1,8—m]U---U[s_1,81] U U[Sm—1,8m]U---.
Then, for all x in MP(V),

Xst = lim XS m—1,5—m ®-® Xs_1,s1 ®-® Xsm Sm41

m—00

Thus, if k= |p] and j =1,...,k,

J
j — T1 T4
Xs,t - E : E : E : xSml,Sm1+1 @ ® Xsmlvsm +1°

i=17ry,...,ri=1,...,5 mi1<- <m1*
Pite =g ma .., miEL

In the previous expression, we use the convention that m; +1 =1 if m; = —1.
So, for j=1,...,k,

<§j: 3 (Z | sm,sm+1> (Z xsm,smH).

=1 7ry,...,ry=1,....,7 \meZ* meZ*
i+ tri=g

Using the Holder inequality, for r =1,...,k and any 8 > (p — 1)/p,

r/p
Z X5, el S C() ( Z nfnp/r|xgm7sm+lp/r>

mezZ* mez*

r/p
<C (Z > npir] smsmﬂl”/’”) ;

r=1mez*
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(p—r)/
where C(r) = (EmGZ* P/ P~ T)) "and C = sup,—; 1 C(r). Our

choice of § ensures that C is finite. Then, there exists a constant K depending
only on £ and C' such that

j j/l’
K (Z S e X:MWW”)

r=1meZ*

and then that
J/p

M<K S Y | oy

r=1n>n(s,t) i=0,...,2" —1
i €ls,t], 7, €lst]

where n(s,t) is the smallest integer n such that there exists some integer k
for which [t7, !, ] C [s,].
Inequality (11.1) is useful, since it allows to estimate both

sup xs and Var (x/
(s,t)€A+,tfs<n‘ t| /3,10, 1]( )
which satisfies
on_1q Jlp
p/\j/z[xorl (x7) < ZZnﬁp/r Z |xtn t?+l|p/r (11.2)
’ r=1n=>0

provided one knows xn 4~ for all dyadic point " =i /2m.

11.2 Application to Brownian motion

We have constructed in Sect. 10.1 a piecewise linear approximation B’(w)
of a Brownian motion trajectory B(w). Let B? (resp. B) be the geometric
multiplicative functional in GP(V) lying above B? (resp. B) and constructed
as in Sect. 10.1.

Proposition 11.1. The sequence (B°)s>o converges i probability to B in
MP(R?) for all 2 < p < 3. Moreover, if B is a piecewise linear approz-
imation of B along dyadic partitions (consider only the §’s of type 1/2™),
then B® converges almost surely to B in MP(R?).

Proof. To simplify, we do not give a complete proof here. We prove only
that B? converges in probability to B where § = 2" for some integer n, and
the partition IT° we use is (£7)x=0, . 2n with ¢} = k27",

There is no real difficulties in extending the proof when IT° is not dyadic
partitions (see [27] for example), although it requires a bit more computa-
tions. Furthermore, still using the ideas to compute the p-variation of B? by
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estimating BJ ,, where s,t are dyadic points (s,t) = (k/2™, (k 4+ 1)/2™) for
allm > 1 and any k € {0,...,2"}, it could be shown that if I7° is the dyadic
partition, then B® converges almost surely to B (see [24]).

Let g be a real number in (2,p). If m < n, then according to the Doob

inequality, there exists a constant C' depending only on ¢ such that for a =
1,....,d,

a,d a a m —-m
“B ty Bth |q] < E|:|Bt;cn - Btm } C( k+1 — L, )q/2 <C2 q/2.

If m > n, then again by the Doob inequality, there exists a constant C' de-
pending only on ¢ such that fora =1,...,d,

q
]<

< C2—magna/2 < c9—ma/2

m m
tk:-i-l — tk

Uiy — 17

§ &
E[|Bf - By
k+1 k

|:|Ba5_Ba§| :|

if 4 is such that [t]*, ¢}, ;] C [t}', 1} ,]. So, we deduce that for a =1,...,d and
any § = 27" for some integer n,

E||Bip. |1 < c27mas?
Lttt = ’

Let Ag:f (B%(w)) be the area enclosed between the curve defined by
(B39 (w), B¥°(w))s<r<t and its chord for a,b € {1,...,d}.

Let m be an integer such that m < n, and let k£ be an integer such that
ke {0,...,2™ —1}. Let r belongs to [t},t}, ) with ¢} > ¢*. Then, it follows
easily from (10.1) that

a,0 a,d
| B — B

a a a a
< |Bl,, — Bip| +|Bi: — Biy|

fora =1,...,d, since Btn = By for alli € {0,...,2" }. The Doob and the
convexity 1nequa11tles 1mply that there exists a constant C depending only on
q such that fora =1,...,d,

E| sup |B*°— Bfﬁg‘q} < 217! (]EWBGML“ - <Ba>t?|q/2]

refty )

+E[(B%) iy — (B p|"?])
< C2q—1(2—nq/2 + 2—mq/2)
<

(11.3)

The last inequality holds since m < n.
Let j and j" be such that ¢ = #;* and ¢7, = t;*. With the Doob inequality,
there exists some constant C” such that, when one uses (11.3), for a,b €

{1,...,d},
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i 5\ (b, by |
El Z (B — BY) (Btfzrl —B/Y)
i=5

< C'E (&1(337 =B ) (B, - <Bb>t?))q/4]

— i4+1
=]

1/2
< C’]E{ sup |Bff — B q} ltiy — tp|er?
rE[t ]

< OV (C24/29—ma/4,

(11.4)
But it is easily verified that
A i (B)
__1jtd Ba Ba .Bb .Bb 1f_1_Bb l# _Ba _Ba
- Z Z( T tﬁ‘)( ey t?) - Z Z( A t?)( o t?)
1=) =7

So, the inequality (11.4) implies that there exists some constant C' depending
only on ¢ such that

E[|Af;f’ . (B5)|q/2} < 027™/2 for all m < n. (11.5)

kotkt1

If m > n, the trajectory of B® between the times ty' and ¢, is a straight
line, so A?ﬁ?,tm (B%) = 0. So, (11.5) is true for all integers n and m.

Since A%*(B?) is the antisymmetric part of B**29 the convexity inequal-
ity implies that for a,b € {1,...,d}

2 1 q/2
ab2.5 |7 a,1,8 b,1,8 q/2—1| gab )
B | < §‘Btzntml Bl | 2 A (B)
— 2
g 2 mq/

for some constant C' that depends only on ¢q. For any 8 > 0,

2m—1

Z mP Z 9—ma/2 _ Z mPom(1-4/2) ~ 4
=0

m>1 m>1

since 1 — ¢/2 < 0. So, one deduces from (11.2) that

21;% (]E {Vgr(Bl";)q} + IE[\q//azr(BQ"s)Q/QD < +o00.

For 0 < u < v < 1, let m(v—u) is the smallest integer m such that [t]", ;" ] C

[u, v] for some integer k. This quantity is deterministic and depends only on
u —v. Owing to (11.1), for § large enough and for all n > 0,
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sup (]E{ sup ‘B;’f’q} + IE[ sup ’Bi’f‘qm]) <C Z mPo~m1=a/2)
>0 |[t—s|<n |[t—s|<n m=m(n)

for some constant C' that depends only on ¢ and 3. Consequently, the series
> msm(n) mP2-m(1=4/2) may be arbitrary small if 7 is chosen small enough.

Corollary 6.1 proves that (B?)s~ is tight in GP(R?) for all p > ¢ > 2. But
we already know from the Wong-Zakai theorem that Bgt converges in proba-
bility to By ¢ uniformly in (s,¢) € A*. Thus, (B®)s¢ converges in probability
to B in GP(RY). O

12 Applications to stochastic analysis

The trajectories of stochastic processes are generally of finite p-variation with
p > 2. The typical case is of course that of the Brownian motion, whose
trajectories are a-Holder continuous for all @ < 1/2; and then of finite p-
variation as soon as p > 2. To apply the theory of rough paths to stochastic
processes, the main difficulty is generally to construct the equivalent of the
iterated integrals of the trajectories of the process.

The theory of rough paths has proved successful in many situations:

— Brownian motion and semi-martingales [32, 43].

— Reversible Markov Processes [1].

— Brownian motion on fractals [17].

— Fractional Brownian motion with Hurst exponent greater than 1/4 (note
that if the Hurst exponent h belongs to (1/4,1/3], then third order iterated
integrals have to be considered) [9, 10].

— Stochastic processes generated by divergence form operators [1, 27].

— Lévy processes [48, 49, 50].

— Gaussian processes in infinite dimension [24].

— Free Brownian Motion [3].

Further results or extensions of previous results to geometric multiplicative
functionals also follow:

— Flow of diffeomorphisms [32, 34].

— Calculus of variations [35].

— Large and small deviation principle [25, 42],
— Support theorems [25].

— Application to homogenization [28].

Some applications to numerical analysis are also provided:

— Pathwise construction of solutions of SDEs using path-dependant meshes
[4, 15, 16].

— “Cubature formula” for computing weak solutions of SDEs numerically
[37, 47].
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Bibliographical and historical remarks

1. The article [32] is the synthesis of a series of works from T. Lyons and his co-
authors: [30, 31, 33, 43]...

2. The idea of “pathwise” stochastic calculus is an old idea: see for example [12,
14]. .. But the theory of rough paths brings for the first time a theory of pathwise
stochastic calculus valid for a large number of processes.

3. The use of the representation of the solution of some SDE using formally expo-
nentials of iterated integrals have been also widely used: see for example the works
[2, 11, 18, 21, 45] and related papers.

4. Stochastic Taylor expansions applied to numerical computations of solutions of
SDEs have also given rise to an abundant literature: see for example [20] and refer-
ences within.

5. (Related to Sect. 10.2). Shortly after being stated in [51], the theorem from
E. Wong and M. Zakai on the approximations of SDEs by ordinary differential equa-
tions attracted many interest, and was extended in many directions. E. J. McShane
was the first to show in [39] that different approximations of the trajectories may
lead not to construct the Stratonovich integral, but the Stratonovich integral and
a drift. An explicit construction is also given. There is now an important literature
on such a corrective drift: See for example [8, 23, 46] and references within.
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