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Summary. This article deals with optimal stopping of Brownian Motion when the
sampling cost is linear in time and the reward upon stopping is a non-decreasing
function of the cumulative maximum. This can be viewed as pricing and management
of a type of look-back American put option. The case of linear reward function was
studied by Dubins & Schwarz [10].

Our treatment of the problem involves a stopped Brownian Motion formula by
Taylor (see Taylor [18] and Williams [19]), first exit times by Brownian Motion
from open intervals, processes with dichotomous transitions and the Azéma—Yor [2]
stopping time.

Introduction

Let {W(t) |t >0, W(0) = 0} be Standard Brownian Motion (SBM) and let
{B(t) | B(t) = pt + cW(t), t = 0} be Brownian Motion (BM) with drift u
and diffusion parameter o, where u € R and o € (0, 00). For d > 0, define the
stopping time
= 1 >
Td mln{t ‘ OrgggtB(s) > B(t) + d} (1)

to be the first time to achieve a drawdown of size d. That is, 74 is the first
time that BM has gone down by d from its record high value so far. As mo-
tivated by Taylor [18], an investor that owns a share whose value at time ¢t is
Vi = Vo exp(B(t)), may consider selling it at time 74 (for some d > 0) because
it has lost for the first time some fixed fraction 1 — exp(—d) of its previously
held highest value Vj exp(My) (where My = maxogs<r, B(s) = B(1q) + d), a
possible indication of change of drift. The investor would also want to know
what should be the “typical” drawdown of the share, that is, its stationary
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distribution. However, while 74 and M, have been unambiguously defined, this
is not the case with the notion of drawdown, that can be equally reasonably
interpreted as each of two types of process that achieve simultaneously their
record heights, the (reflected Brownian Motion) gap process G (so termed by
Dubins & Schwarz [10]) and the extent (so termed by Goldhirsch & Noskovicz
[12]) or downfall (so termed by Douady, Shiryaev & Yor [7]) process X. These
processes are defined via the last maximum time process L and the last max-
imum process M:

M(t) = max B(s) (2)
L(t) =max{s |0 < s <t B(s) = M(t)} (3)
G(t) = M(t) — B(t) (4)
X(t)=M({) - Lnin_ B(s) (5)

Taylor [18] presents a closed form formula for the joint moment generating
function of 74 and B(74). (Hyperbolic sine is denoted sinh(y) = (exp(y) —
exp(—y))/2. Other hyperbolic trigonometric functions such as cosh and coth
are defined accordingly).

dexp(—(a+ p/o?)d) (©)
d cosh(dd) — (o + p/o?) sinh(dd) ’

where § = /(u/02)? +283/02. This formula holds for 3 > 0 and o <
§ coth(dd) — p/o? (a positive upper limit). The formula holds for 3 = 0 as well
if 4 # 0, thus identifying the moment generating function of B(7y) for this
case. To see the difficulty with negative (3, exponential Martingale methods
show that for ;4 = 0 the k’th moment of 74 is linearly related to the 2k’th
central moment of the exponential variable My (Williams [19]). Hence, 74 has
finite moments of all orders but infinite moment generating function on (0, c0).
That is why Taylor’s formula identifies its Laplace transform.
As straightforward corollaries, if p # 0,

Elexp(aB(1a) — f7a)] =

o2 21 2u
ﬁ (exp(;d) —-1- o2 d), (7)

E(Ma] = d+ pE[ra] = g(exp(i—’;d) - 1). ®)

E[rq] =

For 4y =0 and 8 > 0, it is easy to see that

2 4
E[rq] = %; Var(rg) = ;%; E[My] = d; __ cosh(g\/ﬁ). (9)

We can further state,
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Proposition 1. For p > 0, the Markovian gap process G has exponential
stationary distribution with mean o2/(2u) and the stochastically bigger non-
Markovian downfall process X has stationary distribution with expectation
(7%/6) x (02/(2p)) and cumulative distribution function

E[r4] o 2ud/o?
Elra] +d/p exp(2ud/o?) —1°

It should be clear that the gap and downfall processes are ergodic if > 0
and null-recurrent if g = 0. In the latter case, the downfall process, whose
sample paths increase continuously and drop down discontinuously to 0, is
related to a “remarkable” Martingale, introduced by Azéma [1] and so termed
by Azéma & Yor [3]. Further discussion can be found in Protter [16].

The record high value M, is exponentially distributed because as long as
first hitting times of positive heights occur before achieving a drawdown of d,
these times are renewal times: knowing that My > x is the same as knowing
that B has not achieved a drawdown of d by the time it first reached height z.
But then it starts anew the quest for a drawdown!

Let us place this nice fact in the broader context of Skorokhod embed-
dings in SBM. The problem as posed and solved by Skorokhod in [17] is the
following (not stated here in its fullest generality): Given a distribution F'
of a random variable Y with mean zero and finite variance, find a stopping
time 7 in SBM W, with finite mean, for which W(r) is distributed F. The
Chacon—Walsh [5] family of solutions is easiest to describe: Express Y as the
limit of a Martingale Y,, = E[Y" | F,,] with dichotomous transitions (that is, the
conditional distribution of ¥;,+1 on F,, is a.s. two-valued), and then progres-
sively embed this Martingale in W by a sequence of first exit times from open
intervals. Dubins [8] was the first to build such a scheme, letting F; decide
whether Y > E[Y] or Y < E[Y] by a first exit time of W starting at E[Y]
from the open interval (E[Y' |Y < E[Y]],E[Y |Y > E[Y]]). It then proceeds
recursively. E.g., if the first step ended at E[Y |Y > E[Y]] then the second
step ends when W, re-starting at E[Y | Y > E[Y]], first exits the open interval
(E[Y |E[Y] <Y <E[Y |Y >E[Y]]E[Y |Y > E[Y|Y > E[Y]]).

One of the analytically most elegant solutions to Skorokhod’s problem is
the Azéma—Yor stopping time T4_y (see Azéma & Yor [2] and Meilijson [15]),
defined in terms of the upper barycenter function of F, Hp(z) = E[Y |Y >

o] = [Ty dF(y)/(1 - F(z-)) as

Ta_y = min{t ‘ max W(s) > Hp (W(t))} (11)

0<s<t

Fx(d) = (10)

This stopping time relates directly to all facets of our subject matter: if
F' is the exponential distribution with mean d, shifted down by d so as to
have mean zero, then Hp(z) = # + d and Ta_y = 74. Since W2(t) —t is a
mean-zero Martingale, E[ry] = E[W?2(ry)] = Var(W(r4)) = d?, proving the
first statement of (9) up to an obvious change of scale. As mentioned above,
the exponentiality of the embedded distribution holds for general .
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Secondly, among all uniformly integrable Martingales with a given final or
limiting distribution, SBM stopped at the Azéma—Yor stopping time to embed
that distribution is extremal, in the sense that it stochastically maximizes the
essential maximum of the Martingale (see Dubins & Gilat [9] and Azéma &
Yor [2]). That is, if T4_y embeds F then My, , is stochastically bigger than
the maximum of any such Martingale. Hence, if the payoff upon stopping is
a non-decreasing function of M and the sampling cost is a function of the
stopping time, then optimal stopping is always achieved by a T\a_y, because
the replacement of any other stopping time by the T4_y that embeds the
same distribution will preserve the distribution of the cost while increasing
stochastically that of the payoff.

The connection of the Azéma—Yor stopping time to the Chacon—Walsh
family becomes apparent (see Meilijson [15]) if the random variable Y has
finite support {1 < --- < a}. In this case, let F,, be the o-field generated
by min(Y, z,+1), that is, let the atoms of Y be incorporated one at a time,
in their natural order: the first stage decides whether Y = z; (by stopping
there) or otherwise (by temporarily stopping at E[Y |Y > x4]), etc. This is
precisely the Azéma—Yor stopping rule: stop as soon as a value of Y is reached
after having visited the conditional expectation of Y from this value and up.

Sequences of first exit times from open intervals will play a major role
throughout this article, starting from Theorem 2. Analytical results for first
exit times from open intervals are summarized in Lemma 2.

Turning now to the main subject of this paper, Dubins & Schwarz [10]
considered the following optimal stopping problem for u = 0: letting ¢ > p,
find a stopping time that maximizes E[M (1) — ¢7]. They proved that the best
74 is optimal. We state their result, extended to general p, as Theorem 1.
For p = 0 it is a special case of the following Theorem 3, where the payoff
upon stopping is a general non-decreasing function ¢ of the record highest
value of Brownian Motion so far. Its statement and proof relies heavily on the
Azéma—Yor stopping times, that provide, as described above, the structure of

optimal solutions.
2

2
Theorem 1. Let ¢ > p and d = ;—log if p >0 orits limit d = ;—
(as pl0)if w=0. Then pooem R ¢

c

o’ rc c
Slip]E[M(T) —cr] = E[M(7q) — cm4] = oM (; log i 1) (12)

o
where the last expression is to be interpreted as its limit — if u=0.

These theorems analyze what can be roughly seen as pricing and managing
an insurance option against a drop in the value of a stock, whose premium
consists in the payment of an interest exceeding the drift of the held stock.
The previous theorem deals with the stock itself, the next ones with a general
monotone derivative. No attempt is made here at analyzing arbitrage pricing,
only optimal expected stopped value of this look-back time-unconstrained
American put option.
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Theorem 2. Let ¢ be a right-continuous, non-decreasing piece-wise constant
function with values 0 = ¢pg < ¢1 < P2 < -+ < dn such that ¢(x) = ¢; for
a; < x < aj+1, where 0 = ag < a1 < --- < ay < ay41 = 00. Let ¢ > 0.
Consider the optimization problem: find a stopping time ™™ on BM B that
mazimizes E[p(M (1)) —cr]. Define Exy = ¢n and forn =N—-1,N-2,...,0,
using the notation N and d to be introduced in Corollary 1, let

E, = ¢n + N(ﬂa An+1 — Gn, Eng1 — @n, ) (13)

Ty = An — d(ﬂvanJrl —an, Epi1 — ¢n) (14)

Then E[p(M(7*)) — c1*] = Eo and 7* may be defined as follows. Letting

B start at ag = 0, wait for the first exit time of B from the interval (zo,a1).
If exit occurs at the top, wait for the first exit time of B from (x1,a2), ete. If
ever exit occurs at the bottom, stop. Remark: x; = a; is to be interpreted as

imstantaneous exit at the bottom.
For =0 and o =1, the explicit representation of E, and x, is

B = oot (VB a e —a)) Vs
Tp = an — /(B — én)/c.

More generally, if the process W starts at x and its record high value so far
is y = x (thus, the payoff under immediate stopping is ¢(y) = ¢p for some
n), then it is best to stop immediately if and only if © < x,. The optimal
expected payoff at this initial state is

E(z,y) ((\/ ntl — Pn — \/_ (ny1 — 1'))+)2~ (16)

A corresponding expression may be easily derived under u # 0.

Theorem 3. Let ¢ > 0. Let ¢ be a right-continuous, non-negative, non-
decreasing function on [0,00), such that ¢(W(t)) — ct is a.s. negative on
(to, 00) for some (random) to, and its supremum

Se = sgp(qﬁ(W(t)) —ct) (17)

is integrable (e.g., limsup,_, . ¢(x)/2*° < oo for some € > 0). Con-
sider the problem of finding a stopping time 7 on SBM W that mazimizes
E[¢p(M(T)) — cr]. More generally, let H : [0,00) — R be defined as

H(x)= sgp]E[qS(:l: + M(7)) —c1]. (18)

Then

(i) The absolutely continuous function H is the minimal solution of the dif-
ferential equation
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1

H(w) = - (H'(2))” = 9(a). (19)

If ¢ is constant on [xg,00), H is the unique solution of (19) that equals
@ on [xg,00).

The generalization of (16), that is, the optimal expected payoff when W
is at x but has been in the past at a record high value y > x, is

B(e.y) = o) + (VW) o) ~ Vel ) ). (20)

(it) The following Azéma—Yor-type stopping time is optimal for the original
problem (with x = 0): Stop as soon (t) as the gap M(t) — W(t) reaches
the value H'(M(t))/2c.

(#ii) For every distribution F with mean zero and finite variance there is a
non-decreasing function ¢ for which the Azéma—Yor stopping time to
embed that distribution in SBM, is the stopping time described in (ii).
This function ¢ is displayed in (19), taking H'(z) = 2c(x — Hp'(2)),
where H;l 18 the right-continuous inverse of the Hardy-Littlewood upper
barycenter function Hp (see (11)). Even if ¢ does not make S. inte-
grable, the Azéma—Yor stopping time is optimal for this ¢ in the weaker
sense where the supremum in (18) is taken over the integrable stopping
times only.

Now let limsup,_, . ¢(z)/x? > c. Then

Slip]E[(b(M(T)) —cr] =00 (21)

even if the supremum is taken over integrable stopping times only.

As afirst example, consider ¢(x) = . Then the Dubins & Schwarz solution
(see Theorem 1) 74 with d = 1/(2¢), has H(z) = 2+ 1/(4c), that satisfies (19)
and embeds in SBM a shifted exponential distribution.

As a second example, consider piecewise constant functions ¢ as in Theo-
rem 2. Then the piecewise quadratic solution H of (19) has values { £, } at the
points of increase {a, }. The optimal stopping time embeds in SBM a distri-
bution supported by a finite set. This explicit solution provides a reasonable
practical way of approximating optimal solutions for general ¢, by discretizing
¢. This discretization is a key to proving Theorem 3.

In particular, if ¢(z) = V * 1, o) (x), the optimal stopping time is a first
exit time from an interval, i.e., it embeds in SBM a dichotomous distribution
whose upper atom is b (see Corollary 1 in the next section).

As an informal third example, let us try to get formally a quadratic H,
(w.lg.) H(x) = 2%/24+ax+a?/(2c). Just as the Dubins & Schwarz case of linear
H corresponds to Azéma—Yor embedding of (exponentially tailed) exponen-
tial distributions, with constant mean residual function, quadratic H would
correspond to Azéma—Yor embedding of (regularly varying tailed) Pareto dis-
tributions 1—F(z) = 2~ %, with linear mean residual function. For some values
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of ¢ (or a), this distribution has infinite variance, so the stopping time has
infinite mean. Technically, equation (19) yields ¢(x) = (1 — 1/¢)(2%/2 + ax),
non-negative and increasing for ¢ > 1 and a > 0, conveniently satisfying
#(0) = 0, improved by would-be optimal stopping to H(0) = a?/(2¢), but
inconveniently failing to satisfy the integrability assumption of Theorem 3.
However, by the Law of the Iterated Logarithm, if ¢ is quadratic, the supre-
mal payoff is a.s. infinite. The Azéma—Yor solutions identify the supremum
in (18) over all integrable stopping times, and this restricted supremum does
not coincide with the more general one without some dominance assumption
such as integrability of S..
The last section is devoted to further discussion on this issue.

1 Exponential Martingales and first exit times from
open intervals

The analysis to be performed relies on the following well known facts, most
of which originate with It6 & McKean [13] and are taken from Borodin &
Salminen [4]. A method of proof can be taken from Ité6 & McKean [13] or
from Karlin & Taylor [14]. Lemma 1 is a direct consequence of the formula for
the moment generating function of a Gaussian random variable, via the fact
that BM has independent increments. Lemma 2 contains explicit formulas for
the Brownian Gambler’s Ruin Problem.

Lemma 1. For every X € R, exp(A(B(t) — ut) — (2/2)\t) is a mean-1 Mar-
tingale and its derivatives with respect to A are mean-0 Martingales.

Lemma 2. Assume that ;o > 0. Let a < b and consider the first exit time Hq p
from the open interval (a,b) by BM x+ B, where the starting point x is tacitly
assumed to be in the interval (a,b). Let 1, be the indicator function of the
event that x + B exits the interval at the upper endpoint b, and let E[Y; A]
be understood to be the expectation of the product of Y with the indicator
function of the event A, that is, E[Y; Al = E[Y | A|P(A). Then

M sinh((z — a)lo%l)
Bull] = exp( 750~ o) sin((b — a) 4 -
) B w,\sinh((b— )4
1= Eof] = exp( (0 —a) sinh((b — a) 1) )
sinh((z — a) 4 /T = 2007 /12
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sinh((b — ) 4\ /T = 2002 /1:2)
sinh((b — a) & /1 — 2002 /12)

BulHos] = (= (1] - (2 = ) (26)

E,lexp(0Hgp); 1, = 0] = exp(: (a— x)) (25)

The moment generating function E;lexp(0Hg p)] is obtained by adding (24)
and (25). The conditional moment generating functions Egzlexp(6Hgp) | 1p]
are, thus, invariant under a change of sign of p (!):

. sinh((z — a) /T = 2002/12) sinh((b — a) &)
Erlop(@Hos) |1 = 1] = sinh((b — a) 4l \/T — 2002/;:2) sinh((z — a) 4 @)

~ sinh((b— 2) 8\ /T = 2007/12) sinh((b — a) &)
Erloxp(BHas) |10 = 0] = sinh((b — a)@\/l — 26002/ pu?) sinh((b — a?)@) (28)

In particular, for x = (a+b)/2 = 0, expressions simplify via sinh(2t) =
2sinh(t) cosh(t) into
cosh(1/0)d)
cosh((|ul/o2)d\/1T —2002/12)
The limiting values of the moment generating functions (27) and (28) and

the corresponding expected time as the initial point x tends to an endpoint of
the interval are

Ea_,_[exp(@Ha,b) | lb = 1] = ]Eb_ [eXp(QHa,b) ‘ 11, = 0]

- sinh((b — a)(|p|/0?)) /1 — 2002/ 2

Eo[exp(eH_d7d) | lb] =

(29)

= 30
sinh((b — a)(|p|/0?)\/1 — 2002/ ?) (30)
Eot [Haop|1p = 1] = Ey—[Hap | 1p = 0]
_boa co —a ey _ o
Il th((b )02> p? (31

The limiting behavior of (29) as d | 0 is free of u and depends quadrati-
cally on d, as should be expected from the non-differentiability and quadratic
variation regularity of Brownian Motion paths:

]Eo[exp(eH_d d) ‘ 11,} -1 ﬁ

lim 5.

dlo d?

(32)

q

Expression (31) is asymptotic to (b—a)/|u| — o?/u? as b—a — oo and to
(lul/o?)(b—a)? as b—a — 0. The limiting value of (23) as b — oo and x, a
and d = x — a are kept fixed, is

. . 2u
1-— ngroré]Eg;[lb] = P{OgLnOOB(t) < —d} = exp(—pd), (33)

showing that the mazimum M (c0) of BM with negative drift u is exponentially
distributed with mean E[M (00)] = 0/(2|u|)-
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2 Proofs of the main results

Proof of Proposition 1. To prove the exponentiality of the stationary distri-
bution of the gap process G (well known in Queueing Theory circles as the
geometric stationary distribution of queue size in the M/M/1 queue), realize
that the answer is exactly provided by the last statement of Lemma 2: At
arbitrary but large ¢, the gap exceeds d iff the process with time reversed (i.e.,
BM with drift —u) ever reaches height d over its value at time ¢.

The stationary distribution of the downfall process X is obtained as fol-
lows: The stationary probability F'x(d) should be equal to the fraction of time
the process spends below d. Since the sample paths increase continuously and
jump down to 0, this fraction is the ratio of the expected time E[r4] to the
expected cycle time E[r4] + d/p, where d/p is the expected time it takes B
to reach again height My and start all renewally over. This proves (10). The
expectation of this distribution is

E[X] = /OOOP{X >t} dt

_ [T Cp/e et
‘/o exp<<2u/a2>t>—1dt‘2u/o oot — 1

that via the change of variable z = 1 — exp(—t) becomes

o? [tlog(l—z)

E[X]=—— — dz
2u Jo T
o2 ! x x? 23 2K 1 o? 72
= — 1 — —_ —_ e ) d = — — = ——,
2uo(+2+3+4+ . 2/17;112 21 6
proving the statement. As a source for a proof that ((2) = 7%/6, see for
instance Edwards & Penney [11], page 582. O

As a corollary of Lemma 2, we prove the simplest case of the optimal
stopping problem, the case of step-function ¢.

Corollary 1. Let ¢ > 0 be the cost per unit time until stopping BM B with
drift p and diffusion parameter o, starting at * < b, and let V. > 0 be the
reward if this process reaches b before stopping. Then it is optimal to stop at
the first exit time H,p from the open interval (a,b), where a =b—d and d =
d(p,b,V) is o1/V/c when p = 0, and the unique solution of cE[7;] =V when
w# 0, with 74 (see (7)) being the time it takes —B to develop a drawdown d.
In particular, if © < a, stop at time zero. The optimal expected net reward is

2

N(p,b,V,z) = c(x;a - %exp(—%l) sinh(%(m— a))>+, pw#0 (34)

N(0,b,V,z) = ((\/_— b;x\/zfy (35)
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Sketch of a proof. This problem has two features that make it easily solvable
(see [6]): incremental future payoffs are uniformly bounded from above and
unstopped payoffs go to —oo a.s. As such, if the payoff function of a strategy
(as a function of the initial state) is uniformly bounded and ezcessive then the
strategy is optimal. Excessivity means that proceeding for a short time against
the strategy and then following the strategy, is never better than following
the strategy from the beginning. This shows that a first exit time from an
interval is optimal: while inside the interval, it is better not to stop—by the
construction of the interval, that follows—; while outside the interval by more
than some small ¢, if the strategy is followed (that is, stop!) only upon a first
change by ¢, the positive cost of the elapsed time is a pure loss because there
is no chance of getting the reward. Hence, it is always preferable to heed to
the strategy from the beginning. It remains to find the best choice of a. The
expected net reward is VE, [1p] —cE,[Hy ) (see (22) and (26)), and its partial
derivative with respect to a is

C

L= ( (- a- v E) L lon(1 - Bofu) - 1).

The logarithm of expression (23) is readily seen to have a derivative with
respect to a that is independent of x. Hence, the best a is independent of
z as well, an obvious property that the solution must satisfy. Existence and
uniqueness of the solution is due to the claimed representation cE[7y] = V
(that is easily obtained by differentiating (23) with respect to a), since
E[74] continuously strictly increases from 0 to oco. The expected net reward
VE;[1p) — cEy[Hq ) obviously goes to zero as | a because each summand
does. It is positive because, by (26),

Ey[Hap] (b—a) x—a
E.[L,] — p pEq (1]

and by (22), this ratio is an increasing function of x.

Proof of Theorem 1. The first observation is that the objective function is
bounded. In fact, it is uniformly bounded in g and 7 when ¢ — p > 0 is kept
constant: M (1) — et < M(7) — c¢L(1) < M*(00), where M* is the M process
for the BM B(t) — ct, that has drift ;41— ¢ < 0. The last statement of Lemma 2
proves that E[M*(c0)] = 02/(2(c — p)) < oo.

The second observation is that the value V' = sup, E[M (1) — c¢7] is strictly
positive. This is so because 7 = 74 yields expected payoff (see (8)) d — (¢ —
1) E[r4], that is strictly positive for small d because E[r4] is asymptotically
quadratic in d as d | 0.

Now, this expected payoff function of d is strictly concave, increases at
zero and has value zero at zero, and goes to —oco as d — oco. Hence, it has a
unique maximum, located at the value of d as claimed in the statement. To
see that 74 is optimal, let d’ be such that cd’'/u = V. If at any moment the
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gap exceeds d’, it will cost an expected amount more than V to wait for zero
gap, and then re-start the process to obtain the optimal payoff V. Thus, the
expected payoff is strictly higher by stopping now. On the other hand (see
the remarks on excessivity in the sketch of a proof of Corollary 1), if the gap
is less than d’, there is a good rationale for not stopping: Wait for zero gap
and then do whatever it takes to achieve V. Hence, 74 must be optimal. The
equality V = ed'/p, with d' = d, yields (12). 0

Proof of Theorem 2. This proof of Theorem 2 consists of the usual Dynamic
Programming backwards-induction steps, each step in this case being a prob-
lem as in Corollary 1:

If for some reason stopping hasn’t occurred until B reached ay—_1, then the
decision maker (that already paid for elapsed time and collected the reward
¢n—1) is faced precisely with a Corollary 1-type problem, starting at = 0
and aiming for b = ay —ay—_1 in order to collect V = ¢y — pn_1. Corollary 1
identifies uniquely a lower bound a (denoted by xny_1 —an_1 in the notations
of the statement of Theorem 2) such that sampling B is performed if and only
if0=2>a.

If < a, then the problem has the same solution as if ¢y = dn_1 (i€,
¢n is “removed”), to be inductively conceptualized.

If £ > a, then Corollary 1 proves the statement of Theorem 2 as far
as behavior beyond reaching ay_1 is concerned, and provides an equivalent
problem with ¢n removed, ¢n_1 replaced by Eny—1 and all ¢; (with i < N—2),
left unchanged. Apply inductively. O

Proof of Theorem 3. To see (21), consider such a non-negative ¢ and let
by < by < bg--- — 00 be such that for some € > 0, ¢(b;) > (c + €)b? for
each i = 1,2,... For each such i, let ¢; = (¢ +¢)b? 1, ,00). Since ¢ majorizes
each ¢;, the optimal expected net reward for ¢ exceeds that of each ¢;. But
corollary 1 shows that the latter—achieved by an integrable stopping time—is
(v (c+e)b? — bi/c)T)? =b?(/c+ e — \/c)?, that goes to oo with i.

Back to the dominated case, the first point of the proof is to show that the
optimum may be identified as a limit of what can be achieved for bounded ¢.
Similarly to the first argument in the proof of Theorem 1, this is so because
(see (17)), for a > 0,

(@(M (7)) = eT) Lpnr(ry>a) (¢(M )) =€) L{M(r)>a,6(M(r))—cr>0}

(6(M (7)) = eL(7)) L{nt(r)>a,6(M(r)—er>0}
Sc l{JVI (r)y>a,p(M(1))—cT>0} < SC 1Qa7 (36)

INCININ

where @, is the event “W(t) reaches a before ¢p(W (t)) — ¢t becomes negative
forever”. Since S, is integrable by assumption and P(Q,) — 0 as a — oo, it
follows that limsup, ., sup, E[(¢(M (7)) — ¢T) Liar(r)>a}] < 0.

To complete this stage of the proof by giving some explicit essence to the
integrability condition, the statement in parentheses will be proved, namely,
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if p(z) = 2>7° for some ¢ € (0,2) then E[S.] < oo for all ¢ > 0. In the
sequel, Z stands for a standard normal random variable, whose density is f,
its cumulative distribution function is @ and its survival function is @* = 1—®.
We state for ease of reference the well known normal tail inequalities that hold
forxz >0

f(z) . f(z)
PRS- 37
that follow from
0<E[(Z—-2)"] = f(z) —xd*(x) (38)
0<E[((Z-2)")"] = @*+1) 9" (2) - 2f (). (39)

Let {¢;} be for now an arbitrary positive sequence, increasing to co. Eval-
uate

]E{Sup{Wt27E — ct}} = / P{sup{Wffs —ct} > a} da
t 0 t
:/ {Hte [0. oo)BWt>(a+ct)1/(2*€)}da
Z/ E|t€ [t; _1t)9Wt>(a+cti,1)1/(2*€)}da
<Z/ ﬂtE Ot)BWt>((I+Cti_1)1/(2*5)}da
= 22/ (a+cti_g)/ @ s)}da
. 1/(2—¢)
_ Z/ th (a—i—ctz_l) da
Vit
= Z/ 2 5)/2|Z|2 S _ctiq >a}da

+
_ (2—€)/2 9— cti—q
— Zti IEK|Z| e _ tgz—s)/z) ] (40)

i=1

Let z; = cti_l/tl(-%s)/2 and use (38)—(39) and the following norm inequal-
ity

to proceed with the evaluation (40), skipping straightforward details,
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- S (2-9)/2 .
E[Sl;.p{Wf € — ct}} < ;ti D@ — i +2) D (). (42)

Now a sequence {t;} must be displayed for which the RHS of (42) is finite.
As is easy to see using the RHS of (37) to bound &*(z;), any exponential
sequence t; = % with v > 1 will do it.

For discrete ¢, consider the function H(x) = E(z,z) (see (16)). It is con-
tinuous and piece-wise quadratic; furthermore, each such section is either in-
creasing and strictly quadratic (with second derivative 2¢) or constant (with
constant value equal to some ¢;. Such a section necessarily begins at a; and
ends strictly to the left of a;41 if ¢ < N). The first derivative H'(z) at a
breakpoint x between a constant and a quadratic section exists and equals
zero, while at a breakpoint between two quadratic sections (necessarily some
a;), the derivative from the left is y/E; — ¢;—1 while the derivative from the
right is v/E; — ¢;. This function, clearly meeting the definition (18), satisfies
and is determined by (19).

It is important to note that if the range of ¢ (with finitely many values)
is restricted to some interval [¢, @], then the range of H' is restricted to some

interval of the form [0, f(¢ — ¢)].

Let a more general non-decreasing ¢ be restricted to such an interval. If
¢ is discretized on some grid, H is bounded between the two functions Hp,
and Hy corresponding to the (L)ower and (U)pper discretizations. Since these
differ by at most the grid size, there is clearly convergence as the grid size
tends to zero. Now the uniform boundedness of H' for discrete ¢ comes into
play: By weak compactness, there is a function H’ obtained as a limit of such
functions corresponding to discrete cases, whose integral is H, such that (19)
is satisfied. It is uniquely determined by (19) as well, by weak continuity.

Statement (i7) of Theorem 3 is a straightforward concise rephrasing of
the stopping time. Once it is properly understood, the definition of H' in
statement (ii7) becomes apparent, and the only point still needing proof is the
monotonicity of the function ¢ produced by (19) from H, that is expressible
as

o) = (2 [ G- mtO) @t - -7 @) )e @

It is casy to check that 2 [ v(t)dt — v?(x) is non-decreasing for v non-
negative such that v(y) — v(z) < y — x for < y. To prove these properties
for v(z) = x — Hp'(z), observe that Hp(z) = E[X | X > 2] is non-decreasing
and at least x. a

3 Discussion and end of the proof of Theorem 3

The gap between sub-quadratic and quadratic-reaching ¢ is left partially open:
we saw in the proof of Theorem 3 that for a quadratic ¢ with second derivative
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bigger than 2¢, the optimal payoff is infinite because the optimal payoffs of
its bounded approximants are unbounded.

The question is whether this is the only way in which optimal payoffs
can be infinite. More or less in other words, the question is whether for any
mean-zero distribution with finite variance, the corresponding Azéma-—Yor
stopping time is optimal for the function ¢ defined by (19). The answer is
negative: for a quadratic ¢ with second derivative less than 2¢, the bounded
approximants converge to the Azéma—Yor stopping time that embeds in SBM
the corresponding finite-variance Pareto distribution, and (19) is satisfied.
However, this is not optimal! The Law of the Iterated Logarithm implies that
for any quadratic ¢ the supremal expected payoff is infinite. In fact, there
is even arbitrage (if we are somewhat sloppy on definitions): for any K > 0
there is a stopping time that guarantees a net payoff K, deterministically so,
just as in SBM itself (wait until it visits K).

At best, then, what can be hoped for is that for every distribution with
mean zero and finite variance, its Azéma—Yor embedding stopping time is
optimal for the function ¢ defined by (19), and the supremum in (18) is
finite, as long as this supremum is taken in the class of integrable stopping
times. This holds clearly true, since for any stopping time 7 with finite mean,
monotone convergence implies that 7 A T, becomes at least as good as 7 as
a — 00, where Ty, is the first time ¢(M) = a whenever well defined. But for
this problem, with bounded ¢, the optimum is provided as built in Theorems
2 and 3, that are improved by the Azéma—Yor stopping time we started with.

Acknowledgement. The author thanks Lester Dubins, David Gilat, Boris Tsirelson
and Marc Yor for helpful comments and information.

References

1. Azéma, J. Sur les fermés aléatoires. Sem. Prob. Strasb. XIX, Springer LN in
Math. 1123 (1985).

2. Azéma, J. and M. Yor. a. Une solution simple au probleme de Skorokhod. b. Le
probléeme de Skorokhod: compléments. Sem. Prob. Strasb. XIII, Springer LN in
Math. 721 (1968).

3. Azéma, J. and M. Yor. Etude d’une martingale remarquable. Sem. Prob. Strasb.
XXIII, Springer LN in Math. 1372 (1989).

4. Borodin, A. N. and P. Salminen. Handbook of Brownian Motion - Facts and
Formulae. Probability and Its Applications, Birkhauser Verlag: Basel (1996).

5. Chacon, R. V. and J. B. Walsh. One dimensional potential embedding. Sem.
Prob. Strasb. X, Springer LN in Math. 511 (1976).

6. Chow, Y. S., H. Robbins and D. Siegmund. Great expectations: the theory of
optimal stopping. Houghton—Mifflin: Boston (1971).

7. Douady, R., A. N. Shiryaev and M. Yor. On probability characteristics of “down-
falls” in a standard Brownian Motion. Theory Probab. Appl. 44, No. 1, pp. 29-38
(2000).



108

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Isaac Meilijson

Dubins, L. E. On a theorem of Skorokhod. Ann. Math. Statist. 39, pp. 2094-2097
(1968).

Dubins, L. E. and D. Gilat. On the distribution of maxima of Martingales. Proc.
Amer. Math. Soc., 68, No. 3, pp. 337-338 (1978).

Dubins, L. E. and G. Schwarz. A sharp inequality for sub-martingales and
stopping-times. Société Mathématique de France, Astérisque 157/8, pp. 129-
145 (1988).

Edwards, C. H. and D. E. Penney. Calculus and Analytic Geometry. Prentice
Hall: New Jersey (1982).

Goldhirsch, I. and S. H. Noskovicz. The first passage time distribution in random
random walk. Physics Review, A42, pp. 2047-2064 (1990).

It6, K. and H. P. McKean. Diffusion processes and their sample paths. Springer-
Verlag: Berlin and New York (1965).

Karlin, S. and H. M. Taylor. A First Course in Stochastic Processes, 2nd ed.
Academic Press: New York (1975).

Meilijson, I. On the Azéma—Yor stopping time. Sem. Prob. Strasb. XVII,
Springer LN in Math. 986, pp. 225-226 (1981/82).

Protter, P. Stochastic integration and differential equations: a new approach.
Springer-Verlag: Berlin and Heidelberg (1990).

Skorokhod, A. Studies in the theory of random processes. Addison Wesley: Read-
ing (1965).

Taylor, H. M. A stopped Brownian Motion formula. Ann. Prob. 3, pp. 234—246
(1975).

Williams, D. On a stopped Brownian motion formula of H. M. Taylor. Sem.
Prob. Strasb. X, Springer LN in Math. 511, pp. 235-239 (1976).



	1 Exponential Martingales and first exit times from open intervals
	2 Proofs of the main results
	3 Discussion and end of the proof of Theorem 3
	References



