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Summary. Let (Y (t), t � 0) be the fragmentation process introduced by Aldous
and Pitman that can be obtained by time-reversing the standard additive coalescent.
Let (σ1/2(t), t � 0) be the stable subordinator of index 1/2. Aldous and Pitman
showed that the distribution of the sizes of the fragments of Y (t) is the same as the
conditional distribution of the jump sizes of σ1/2 up to time t, given σ1/2(t) = 1.
We show that this is a special property of the stable subordinator of index 1/2, in
the sense that if α �= 1/2 and σα is the stable subordinator of index α, then there
exists no self-similar fragmentation for which the distribution of the sizes of the
fragments at time t equals the conditional distribution of the jump sizes of σα up to
time t, given σα(t) = 1. We also show that a property relating the distribution of a
size-biased pick from Y (t) to the distribution of σ1/2(t) is similarly particular to the
α = 1/2 case. However, we show that for each α ∈ (0, 1), there is a family of self-
similar fragmentations whose behavior as t ↓ 0 is related to the stable subordinator
of index α in the same way that the behavior of Y (t) as t ↓ 0 is related to the stable
subordinator of index 1/2.

Key words: Self-similar fragmentation, stable subordinator, Poisson–Kingman dis-
tribution.

1 Introduction

Fragmentation processes describe an object that breaks into smaller pieces
in a random way as time moves forward. Ranked fragmentations are Markov
processes taking their values in the set ∆ = {(xi)∞i=1 : x1 � x2 � · · · �
0,

∑∞
i=1 xi � 1}. If (X(t), t � 0) is a ranked fragmentation, we can regard

the terms in the sequence X(t) as being the masses of the components into
which the object has fragmented after time t, with the masses being ranked in
decreasing order. Alternatively, one can study partition-valued fragmentations,
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which take their values in the set of partitions of N = {1, 2, . . .}. If (Π(t), t �
0) is a partition-valued fragmentation and s < t, then the partition Π(t) is a
refinement of the partition Π(s).

In recent years, a fragmentation introduced in [4] by Aldous and Pitman,
which we call the Aldous–Pitman fragmentation, has been studied extensively.
Aldous and Pitman first constructed this fragmentation process from the
Brownian continuum random tree (CRT) of Aldous (see [1, 2, 3]). The CRT is
equipped with a finite “mass measure” concentrated on the leaves of the tree
and a σ-finite “length measure” on the skeleton of the tree. When the CRT
is cut at various points along the skeleton, the tree is split into components
whose masses sum to one. Aldous and Pitman defined a ranked fragmentation
process (Y (t), t � 0) such that Y (t) consists of the ranked sequence of masses
of tree components after the CRT has been subjected to a Poisson process of
cuts at rate t per unit length.

One can also obtain a partition-valued fragmentation (Π(t), t � 0) by
picking leaves U1, U2, . . . independently from the mass measure of the CRT,
and then declaring i and j to be in the same block of Π(t) if and only if the
leaves Ui and Uj are in the same tree component at time t. To see how this
process is related to (Y (t), t � 0), we first give a definition. If B ⊂ N and

lim
N→∞

1
N

N∑

j=1

1{j∈B}

exists, then this limit is called the asymptotic frequency of B. If π is a partition
of N, let Λ(π) be the sequence consisting of the asymptotic frequencies of the
blocks of π ranked in decreasing order (whenever these frequencies exist).
Then (Λ(Π(t)), t � 0) =d (Y (t), t � 0).

The Aldous–Pitman fragmentation has arisen in a variety of contexts.
Aldous and Pitman showed in [4] that if X(t) = Y (e−t), then the process
(X(t),−∞ < t <∞) is a version of the standard additive coalescent. Loosely
speaking, the standard additive coalescent is a coalescent process with the
property that fragments of masses x and y are merging together at the rate
x+y. See [20], [5], and [10] for more results related to the additive coalescent.
Chassaing and Louchard [18] related the process (Y (t), t � 0) to parking func-
tions in combinatorics. Also, Bertoin [8, 10] showed that (Y (t), t � 0) can be
constructed from a Brownian motion with drift and that the so-called eternal
versions of the additive coalescent could be constructed in a similar way from
excursions of processes with exchangeable increments. Miermont [25] used this
method to generalize [8] by studying a larger class of fragmentation processes,
related to the additive coalescent, which can be obtained by adding drift to
a general Lévy process with no positive jumps, implying several explicit laws
for certain versions of the additive coalescent. The use of the ballot theorem
therein was motivated by a similar approach of Schweinsberg [29] to analyze
some functionals of the Brownian excursion.
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The starting point for the present paper is the following theorem due to
Aldous and Pitman, which shows three ways in which the Aldous–Pitman
fragmentation is related to the stable subordinator of index 1/2.

Theorem 1. Let (Y (t), t � 0) be the Aldous–Pitman fragmentation, and
write the components of the fragmentation as Y (t) = (Y1(t), Y2(t), . . . ). Also,
let (Π(t), t � 0) be a partition-valued fragmentation with the property that
(Λ(Π(t)), t � 0) =d (Y (t), t � 0). Let Y ∗(t) be the asymptotic frequency of
the block of Π(t) containing the integer 1. Let (σ1/2(t), t � 0) be a stable
subordinator of index 1/2. Then, the following hold:
1. For every t � 0, we have Y (t) =d (J1, J2, . . . |σ1/2(t) = 1), where
J1, J2, . . . are the jump sizes of σ1/2 up to time t, ranked in decreasing order.
2. We have

(
Y ∗(t), t � 0

)
=d

(
1

1 + σ1/2(t)
, t � 0

)
.

3. As t→ 0, we have t−2(1−Y1(t), Y2(t), Y3(t), . . . ) →d (σ1/2(1), J1, J2, . . . ).

Part 1 of the theorem can easily be obtained from Theorem 4 of [4] and
scaling properties of stable subordinators. Part 2 is Theorem 6 of [4]. Part 3
is Corollary 13 of [4].

It is natural to ask whether there are other fragmentation processes re-
lated to the stable subordinator of index α ∈ (0, 1) in the same ways that
the Aldous–Pitman fragmentation is related to the stable subordinator of in-
dex 1/2. In [11], Bertoin constructed a family of fragmentation processes,
called self-similar fragmentations, which satisfy a scaling property. Because
the Aldous–Pitman fragmentation is self-similar, one might expect the fam-
ily of self-similar fragmentations to include fragmentations with properties
that generalize properties of the Aldous–Pitman fragmentation. The purpose
of this paper is to consider separately the three parts of Theorem 1 and to
determine whether there are other self-similar fragmentations for which sim-
ilar results hold, with the stable subordinator of index 1/2 replaced by the
stable subordinator of index α. Our conclusion, made precise by Theorem 2
and Propositions 1 and 2 below, is that only part 3 relating to asymptotics as
t→ 0 can be easily generalized. Parts 1 and 2 of the theorem describe special
properties of the α = 1/2 case which do not extend, at least not in the most
natural way, to other α ∈ (0, 1).

Before stating these results, we will define self-similar fragmentations and
review some of their properties. For 0 � l � 1, define ∆l = {(xi)∞i=1 : x1 �
x2 � · · · � 0,

∑∞
i=1 xi � l}. Note that ∆ = ∆1. We will denote points in

∆ by x = (x1, x2, . . . ). Suppose κt(l) is a probability measure on ∆l for all
0 � l � 1 and t � 0. For each L = (l1, l2, . . . ) ∈ ∆, let κt(L) denote the distri-
bution of the decreasing rearrangement of the terms of independent sequences
L1, L2, . . . , where Li has the distribution κt(li) for all i. For each t � 0, denote
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by κt the family of distributions (κt(L), L ∈ ∆), which we call the fragmen-
tation kernel generated by (κt(l), 0 � l � 1). A time-homogeneous, ∆-valued
Markov process whose transition semigroup is given by fragmentation kernels
is called a fragmentation process or ranked fragmentation. This definition is
essentially taken from [8], although we allow the sum of the masses of the
fragments to decrease over time as in [6].

For 0 � l � 1, let gl : ∆ → ∆l be the map defined by gl(x1, x2, . . . ) =
(lx1, lx2, . . . ). A ranked fragmentation is said to be a homogeneous fragmen-
tation if, for all 0 � l � 1 and t > 0, the probability measure κt(l) is the
image under gl of the probability measure κt(1). Notice that the term “ho-
mogeneous” does not refer to the assumed homogeneous Markov property of
the semigroup. We call the fragmentation process a self-similar fragmentation
of index β ∈ R if, for all 0 � l � 1 and t > 0, κt(l) is the image under gl of
κr(1), where r = tlβ. Note that a self-similar fragmentation of index 0 is a
homogeneous fragmentation.

Bertoin formulated definitions of homogeneity and self-similarity for parti-
tion-valued fragmentations that are analogous to the definitions given above
for ranked fragmentations. In [9], Bertoin showed that all homogeneous
partition-valued fragmentations can be described in terms of an erosion rate
c � 0 and a measure ν on ∆ \ (1, 0, 0, . . . ), called the Lévy measure (or dislo-
cation measure), which satisfies

∫

∆

(1− x1) ν(dx) <∞. (1)

In [11], Bertoin showed that all self-similar fragmentations can be obtained
from homogeneous fragmentations by a random time change which is de-
termined by β. Consequently, all self-similar partition-valued fragmentation
are fully described by their characteristics (β, c, ν). For each triple (β, c, ν),
Bertoin constructs a self-similar fragmentation with these characteristics from
a Poisson process. We will present this construction in the next section. The
erosion rate c describes the rate at which singletons break away from larger
blocks of the partition, and the Lévy measure governs the rates of other frag-
mentation events. If ν({x : x1 + x2 < 1}) = 0, then no block will break into
more than two blocks at any given time. We then call the process a binary
fragmentation.

If (Π(t), t � 0) is a self-similar partition-valued fragmentation, then Π(t)
is an exchangeable random partition for all t. It follows from results of King-
man [23] that almost surely each block of Π(t) has an asymptotic frequency.
By Theorem 3 of [9], we have the stronger result that if (Π(t), t � 0) is ho-
mogeneous, then almost surely all blocks of Π(t) have asymptotic frequencies
for all t. We can then see from the construction described in section 3 of [11]
(and recalled in Sect. 2 below) that there exists a version (Π(t), t � 0) of any
self-similar fragmentation process such that almost surely all blocks of Π(t)
have asymptotic frequencies for all t. Furthermore, if (Π(t), t � 0) denotes
this version of a self-similar partition-valued fragmentation (which we will al-
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ways suppose in the sequel when considering self-similar fragmentations), then
(Λ(Π(t)), t � 0) is a self-similar ranked fragmentation with the same index of
self-similarity. Berestycki [6] showed conversely that if (X(t), t � 0) is a self-
similar ranked fragmentation, then there exists a self-similar partition-valued
fragmentation (Π(t), t � 0) such that (Λ(Π(t)), t � 0) = (X(t), t � 0).
Consequently, self-similar ranked fragmentations are also in one-to-one corres-
pondence with triples (β, c, ν), where β ∈ R, c � 0, and ν is a measure on
∆\(1, 0, 0, . . . ) satisfying (1). Thus, we may work either with partition-valued
fragmentations or ranked fragmentations, and both will be useful later in the
paper.

Several examples of self-similar fragmentations have been studied. In [16]
and [17], Brennan and Durrett studied a family of self-similar fragmentations.
In the same context, see also Filippov [21]. Bertoin [11] considered an example
that is related to Brownian excursions. Bertoin also observed in [11] that the
Aldous–Pitman fragmentation is the binary self-similar fragmentation with
characteristics (1/2, 0, ν), where the restriction of ν to the first coordinate has
density h(x) = (2π)−1/2x−3/2(1 − x)−3/21[1/2,1](x).

The following theorem, which is our main result, is related to part 1 of
Theorem 1 about one-dimensional distributions. Here, and throughout the rest
of the paper, σα = (σα(t), t � 0) denotes a stable subordinator of index α.

Theorem 2. Let (X(t), t � 0) be a self-similar fragmentation, and let α ∈
(0, 1). Let J1(t) � J2(t) � . . . be the ranked jump sizes of σα between times 0
and t. If

X(t) =d

(
J1(t), J2(t), · · ·

∣∣ σα(t) = 1
)

(2)

for all t, then α = 1/2 and (X(t), t � 0) is the Aldous–Pitman fragmentation.

The distributions on the right-hand side of (2) are part of a larger family of
distributions studied in [28, 26]. Suppose J1 � J2 � . . . is the ranked sequence
of points from a Poisson process with intensity measure Θ on (0,∞), where Θ
has density θ(x) and integrates 1 ∧ x. Let T =

∑∞
i=1 Ji. Then (Ji/T )∞i=1 is a

random point in ∆. Its distribution is called the Poisson–Kingman distribution
with Lévy density θ and is denoted by PK(θ). The conditional distribution of
(Ji/T )∞i=1 given T = t is denoted by PK(θ | t). Since σα(t) =d t1/ασα(1) by
scaling properties of stable subordinators, we have

(
J1(t), J2(t), · · ·

∣∣ σα(t) = 1
)

=d

(
t1/αJ1(1), t1/αJ2(1), · · ·

∣∣ σα(1) = t−1/α
)
. (3)

For α ∈ (0, 1), let θα be the Lévy density given by θα(x) = Cα x
−α−1, where Cα

is the constant defined later in (8). If J1(t) � J2(t) � . . . are the ranked jump
sizes of σα between times 0 and t, then the distribution of (J1, J2, . . . ) has the
same distribution as the ranked sequence of points of a Poisson point process
with Lévy density tθα. Therefore (3) implies that the PK(tθα | 1) distribution
is the same as the PK(θα | t−1/α) distribution. Theorem 1 therefore shows
that if (Y (t), t � 0) is the Aldous–Pitman fragmentation, then Y (t) has the
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PK(θ1/2 | t−2) distribution. Theorem 2 shows that there is no self-similar frag-
mentation (X(t), t � 0) such that the distribution of X(t) is PK(θα | t−1/α)
for all t. We have not, however, ruled out the possibility that a fragmenta-
tion which is not self-similar may have this property. In general, it remains
an open problem to characterize the Lévy densities θ for which there exists
a fragmentation process (Z(t), t � 0) and a function f : (0,∞) → (0,∞)
such that Z(t) has the PK(θ | f(t)) distribution for all t > 0. However, we
note that Miermont, in [25], has studied fragmentation processes that are not
self-similar whose one-dimensional distributions are those of jump sizes for
conditioned subordinators with varying Lévy measure, and one can show that
a subclass of these fragmentations satisfy the asymptotics (4) below.

We now turn to a result for partition-valued fragmentations that pertains
to the distribution of the mass of the block containing 1, which we sometimes
call a “tagged fragment”. The distribution of the mass of this block at time t
is the same as the distribution of a size-biased pick from the sizes of the
fragments of the corresponding ranked fragmentation at time t, provided that
the sum of the sizes of the fragments at time t is 1 almost surely.

Proposition 1. Let (Π(t), t � 0) be a partition-valued binary self-similar
fragmentation. Let α ∈ (0, 1). Let λ(t) be the asymptotic frequency of the
block of Π(t) containing the integer 1. If for some decreasing function g,

(
λ(t), t � 0

)
=d

(
g
(
σα(t)

)
, t � 0

)
,

then α = 1/2, g(x) = (1 + Kx)−1 for some K > 0 and (Λ(Π(t)), t � 0) is
the Aldous–Pitman fragmentation, up to a multiplicative time constant.

Our next result gives, for each α ∈ (0, 1), a family of binary self-similar
fragmentations whose asymptotics as t→ 0 are related to the stable subordi-
nator of index α.

Proposition 2. Fix α ∈ (0, 1), and let Cα = α/(Γ (1 − α) cos(πα/2)). Let ν
be a Lévy measure on ∆ such that ν({x : x1 +x2 < 1}) = 0 and the restriction
ν2 of ν to the second coordinate has density h, where

h(x) = Cα x
−1−αs(x)1[0,1/2](x)

for some positive function s satisfying limx→0 s(x) = 1. Let β � 0. Let
(X(t), t � 0) be the self-similar fragmentation with characteristics (β, 0, ν).
Write X(t) = (X1(t), X2(t), . . . ). Then, as t→ 0, we have

t−1/α
(
1−X1(t), X2(t), X3(t), . . .

)
→d

(
σα(1), J1(1), J2(1), . . .

)
, (4)

where J1(1) � J2(1) � . . . are the jump sizes of σα up to time 1.

Another connection between the self-similar fragmentations in Proposi-
tion 2 and stable subordinators can be deduced from Bertoin’s work [13]



Self-similar fragmentations and stable subordinators 339

regarding the small masses in self-similar fragmentations. Consider a binary
self-similar fragmentation (X(t), t � 0) with characteristics (β, 0, ν), where
β � 0. Let ν2 be the restriction of ν to the second coordinate. Let

N(ε, t) = max{i : Xi(t) > ε}

be the number of components in the fragmentation at time t whose size is
greater than ε. Let

M(ε, t) =
∞∑

i=1

Xi(t)1{Xi(t)<ε}

be the total mass of the fragments at time t of size less than ε. Define φ(ε) =
ν2([ε, 1/2]) and f(ε) =

∫ ε
0 x ν2(dx). It follows from Theorem 1 of [13] that φ is

regularly varying as ε ↓ 0 with index −α if and only if f is regularly varying
as ε ↓ 0 with index 1− α. It also follows from Theorem 1 of [13] that if these
regular variation conditions hold and β = 1− α, then for all t > 0,

lim
ε↓0

N(ε, t)
φ(ε)

= lim
ε↓0

M(ε, t)
f(ε)

= t

with probability one. Therefore, a straightforward calculation shows that if
(X(t), t � 0) satisfies the conditions of Proposition 2 with β = 1 − α, then
N(ε, t) ∼ Cα α

−1tε−α and M(ε, t) ∼ Cα(1 − α)−1tε1−α with probability one
for all t > 0, where ∼ means that the ratio of the two sides tends to 1 as ε ↓ 0.
For a stable subordinator of index α with Lévy measure η(dx) = Cα x

−1−α dx,
the expected number of jumps of size larger than ε before time t is Cα α−1tε−α,
and the expected value of the sum of the sizes of the jumps of size less than ε
before time t is Cα(1 − α)−1tε1−α. Thus, N(ε, t) behaves like the number
of jumps of a stable subordinator of index α that have size larger than ε,
while M(ε, t) behaves like the sum of the sizes of the small jumps of a stable
subordinator of index α.

The rest of this paper is organized as follows. In Sect. 2, we present the
Poisson process construction of self-similar fragmentations given by Bertoin
in [11]. In Sect. 3, we establish some relevant facts about stable subordinators.
In Sect. 4, we relate the small-time behavior of self-similar fragmentations to
the dislocation measure (Proposition 3) and prove Proposition 2. We review
some of Bertoin’s results on the large-time behavior of self-similar fragmenta-
tions in Sect. 5. Section 6 is devoted to the proof of Theorem 2, and Sect. 7
is devoted to the proof of Proposition 1.

2 A Poisson process construction of self-similar
fragmentations

In [11], Bertoin shows how to construct an arbitrary partition-valued self-
similar fragmentation with characteristics (β, c, ν) from a Poisson process.
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The conventions we are using here (for labelling partitions, and for taking
reduced partitions in property 3 below) are actually those used in [6], but
by exchangeability arguments explained therein they do indeed give the same
distributional object as the construction in [9, 11].

Let εn be the partition of N into the two blocks {n} and N \ {n}. Given
x = (x1, x2, . . . ) ∈ ∆, let P x be the distribution of the random partition Π
obtained by first defining an i.i.d. sequence of random variables (Zi)∞i=1 such
that P (Zi = j) = xj and P (Zi = 0) = 1 −

∑∞
j=1 xj , and then defining Π to

be the partition with the property that i and j are in the same block if and
only if Zi = Zj � 1. Let κ be the measure on the set P of partitions of N

defined such that for all Borel subsets B of P , we have

κ(B) =
∫

∆

P x(B) ν(dx) + c
∞∑

i=1

1{εn∈B}. (5)

Now, let # denote counting measure on N, and let ((Γt, kt), t � 0) be a Poisson
point process on P×N with intensity measure κ⊗#. We can use this Poisson
point process to construct a partition-valued self-similar fragmentation with
characteristics (β, c, ν). The first step is to construct a homogeneous fragmen-
tation with characteristics (0, c, ν). Let AN consist of all partitions in P such
that not all the integers {1, . . . , N} are in the same block. Then κ(AN ) < ∞
for all N , so (Γt, kt) ∈ AN ×{1, . . . , N} for only a discrete set of times, which
we can enumerate as t1 < t2 < . . . . Define (ΠN (t), t � 0) to be the unique
process taking its values in the set of partitions of {1, . . . , N} that satisfies
the following three properties:
1. ΠN (0) is the trivial partition of {1, . . . , N}.
2. ΠN is constant on [ti−1, ti) for all i ∈ N, where we set t0 = 0.
3. Integers i and j are in distinct blocks of ΠN (ti) if and only if either i and j
are in distinct blocks of ΠN (ti−1), or i and j are in distinct blocks of Γti and
both i and j are in a block of ΠN (ti−1) whose smallest integer is kti .

If π is a random partition of N, let RNπ be the random partition of
{1, . . . , N} such that if 1 � i, j � N , then i and j are in the same block
of RNπ if and only if they are in the same block of π. The processes ΠN are
consistent as N varies, so there exists a unique process (Π(t), t � 0) such
that (RNΠ(t), t � 0) = (ΠN (t), t � 0) for all N . Then (Π(t), t � 0) is a
homogeneous fragmentation with characteristics (0, c, ν), as discussed in [9].

In [11], Bertoin shows that any self-similar fragmentation can be con-
structed from a homogeneous fragmentation by a random time change. Let
In(t) be the asymptotic frequency of the block of Π(t) containing n. Define

T (β)
n (t) = inf

{
u � 0 :

∫ u

0

|In(r)|−β dr > t

}
. (6)

Define the process (Π(β)(t), t � 0) such that i and j are in the same block of
Π(β)(t) if and only if i and j are in the same block of Π(T (β)

i (t)). It is shown
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in [11] that (Π(β)(t), t � 0) is a self-similar partition-valued fragmentation
with characteristics (β, c, ν). Therefore, (Λ(Π(β)(t)), t � 0) is a self-similar
ranked fragmentation with characteristics (β, c, ν).

3 Stable subordinators

An R-valued stochastic process X = (Xt, t � 0) is called a subordinator
if it is nondecreasing and has stationary independent increments. If X is a
subordinator, then for all λ � 0, we have

E
[
e−λXt

]
= exp

(
−t

(
dλ +

∫ ∞

0

(
1− e−λx

)
η(dx)

))
,

where d � 0 is the drift coefficient and η is the Lévy measure on (0,∞),
which must satisfy

∫∞
0 (1∧x) η(dx) <∞. The process X is said to be a stable

subordinator of index α ∈ (0, 1) if d = 0 and

η(dx) = Cα x
−1−α dx (7)

for some constant Cα. Since changing the constant Cα just changes time by
a constant factor, we lose no generality by considering just one value for Cα.
We will therefore take

Cα =
α

Γ (1− α) cos(πα/2)
. (8)

We will denote by (σα(t), t � 0) a subordinator whose Lévy measure is given
by (7) and (8). The stable subordinator of index α satisfies the scaling property

(
λ1/ασα(t), t � 0

)
=d

(
σα(λt), t � 0

)
for every λ > 0. (9)

It is shown, for example, in chapter 17 of [22] that the characteristic func-
tion of σα(1) is given by

φ(t) = exp
(
−|t|α

(
1− i sgn(t) tan

(πα
2

)))
.

(Proposition 11 in chapter 17 of [22] actually gives this result when Cα =
2αΓ (α) sin(πα/2)/π, but this is equivalent to (8) because of the duplication
formula Γ (α)Γ (1 − α) sin(πα/2) cos(πα/2) = π/2 for all α ∈ (0, 1).) Let ft
be the density function of σα(t), and let f = f1. It follows from the formulas
given in [30] that if A = α1/2(1−α)(cos(πα/2))−1/(2(1−α))[2π(1 − α)]−1/2 and
B = (1− α)αα/(1−α)(cos(πα/2))−1/(1−α), then

f(x) ∼ Ax−1−α/(2(1−α)) exp
(
−Bx−α/(1−α)

)
, (10)

where ∼ means that the ratio of the two sides goes to 1 as x→ 0.
To get asymptotics for large x, note that [30] gives
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f(x) =
∞∑

n=1

anx
−1−αn,

where

an =
(−1)n−1Γ (nα + 1)

n!π

(
1 + tan2

(πα
2

))n/2
sin(nπα). (11)

Stirling’s formula gives limn→∞ an = 0, so there exists a constant D such that
if we write

f(x) = a1x
−1−α(1 + r(x)

)
, (12)

then |r(x)| � Dx−α for all x.
It is well-known that σα is a pure-jump process. The sequence consisting

of the jump sizes of σα between times 0 and t, ranked in decreasing order, has
the same distribution as the ranked sequence of points from a Poisson random
measure on (0,∞) with intensity measure ρt(x) dx, where ρt(x) = Cα tx

−1−α.
It will be useful to consider size-biased picks from the jump sizes of σα. We
will use the following lemma, which can be deduced from Lemma 2.1 of [27].

Lemma 1. Fix t > 0. Let J1(t) � J2(t) � . . . be the jump sizes of σα between
times 0 and t. Let J∗1 (t) be a size-biased pick from these jump sizes, and then
let J∗2 (t) be a size-biased pick from the remaining jump sizes. Then,

P
(
J∗1 ∈ dx

∣∣ σα(t) = z
)

=
xρt(x)ft(z − x)

zft(z)
dx,

and the joint density of (σα(t), J∗1 (t), J∗2 (t)) is given by

h(z, x, y) =

(
xρt(x)

)(
yρt(y)

)
ft(z − x− y)

z(z − x)
. (13)

This Lemma implies the following result about the distribution as t→∞
of a size-biased pick from the jump sizes of σα(t), conditional on σα(t) = 1.

Lemma 2. Let J∗1 (t) be a size-biased pick from the jump sizes of σα between
times 0 and t. Let µt denote the conditional distribution of t1/(1−α)J∗1 (t) given
σα(t) = 1. As t→∞, µt converges weakly to the Gamma(1−α,Bα/(1−α))
distribution.

Proof. It follows from Lemma 1 that P (J∗1 (t) ∈ dx |σα(t) = 1) = gt(x) dx,
where the density gt is given by

gt(x) =
xρt(x)ft(1− x)

ft(1)
=

Cα tx
−αft(1 − x)
ft(1)

(14)

for x ∈ (0, 1). It follows from (9) that ft(x) = f(t−1/αx)t−1/α for all x > 0.
Using this fact and (14), we see that µt has density
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ht(x) = gt
(
t−1/(1−α)x

)
t−1/(1−α)

=
Cα t

(
t−1/(1−α)x

)−α
f
(
t−1/α(1 − t−1/(1−α)x)

)
t−1/(1−α)

f
(
t−1/α

)

=
Cα x

−αf
(
t−1/α(1− t−1/(1−α)x)

)

f
(
t−1/α

)

for 0 < x < t1/(1−α). Using (10), it follows that for each x > 0, we have

lim
t→∞

ht(x) = lim
t→∞

Cα x
−α(1− t−1/(1−α)x

)−1−α/(2(1−α))

exp
(
−Bt1/(1−α)

)

× exp
(
−B

(
t−1/α(1− t−1/(1−α)x)

)−α/(1−α)
)

= lim
t→∞

Cα x
−α exp

(
−Bt1/(1−α)

(
(1 − t−1/(1−α)x)−α/(1−α) − 1

))

= Cα x
−αe−Bαx/(1−α).

Note that if λ = Bα/(1 − α), then λ1−α = α/ cos(πα/2), and thus Cα =
λ1−α/Γ (1−α). Thus, ht converges pointwise to the Gamma(1−α, λ) density
as t→∞. The result of the lemma then follows from Scheffé’s Theorem. 
�

If Z has a Gamma(1− α,Bα/(1 − α)) distribution, then for all r � 0,

E[Zr] =
Γ (r + 1− α)
Γ (1− α)

(
Bα

1− α

)−r
=

Γ (r + 1− α)
Γ (1− α)

(
cos(πα/2)

α

)r/(1−α)

. (15)

We will need these moments in Sect. 6.
We now consider small-time asymptotics.

Lemma 3. Let J1(t) � J2(t) � . . . be the jump sizes of σα between times 0
and t. Let J∗1 (t) be a size-biased pick from these jump sizes. If A is a Borel
subset of [0, 1− a] for some a > 0, then

lim
t→0

t−1P
(
J∗1 (t) ∈ A

∣∣ σα(t) = 1
)

=
∫

A

Cα x
−α(1 − x)−1−α dx. (16)

If B is a Borel subset of [1/2, 1− a], then

lim
t→0

t−1P
(
J1(t) ∈ B

∣∣ σα(t) = 1
)

=
∫

B

Cα x
−1−α(1 − x)−1−α dx. (17)

Proof. For all t > 0 and all Borel subsets A of [0, 1−a], Lemma 1 implies that

t−1P
(
J∗1 (t) ∈ A

∣∣ σα(t) = 1
)

=
∫

A

xρt(x)ft(1− x)
tft(1)

dx

=
∫

A

Cα x
−αft(1− x)
ft(1)

dx.
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By (9), ft(1)t1/α = f(t−1/α) and ft(1 − x)t1/α = f(t−1/α(1 − x)). There-
fore, (12) implies that a1t

1+1/α(1 − Dt) � ft(1)t1/α � a1t
1+1/α(1 + Dt)

and a1t
1+1/α(1 − x)−1−α(1 −Dt(1 − x)−α) � ft(1 − x)t1/α � a1t

1+1/α(1 −
x)−1−α(1−Dt(1− x)−α). It follows that for all x ∈ [0, 1− a], we have

(1− x)−1−α
(

1−Dt(1 − a)−α

1 + Dt

)
� ft(1 − x)

ft(1)

� (1 − x)−1−α
(

1 + Dt(1− a)−α

1−Dt

)
.

Therefore, by the Dominated Convergence Theorem,

lim
t→0

t−1P
(
J∗1 (t) ∈ A

∣∣ σα(t) = 1
)

=
∫

A

Cα x
−α(1 − x)−1−α dx,

which is (16).
If J∗1 (t) > 1/2, then J∗1 (t) = J1(t). Therefore, it follows from the definition

of a size-biased pick from a sequence that for x ∈ [1/2, 1− a],

P
(
J1(t) ∈ dx

∣∣ σα(t) = 1
)

= x−1P
(
J∗1 (t) ∈ dx

∣∣ σα(t) = 1
)
.

Therefore, if B is a Borel subset of [1/2, 1], then

t−1P
(
J1(t) ∈ B

∣∣ σα(t) = 1
)

=
∫

B

ρt(x)ft(1 − x)
tft(1)

dx

=
∫

B

Cα x
−1−αft(1− x)

ft(1)
dx.

Equation (17) follows from the Dominated Convergence Theorem as in the
proof of (16). 
�

Lemma 4. Let J1(t) � J2(t) � . . . be the jump sizes of σα between times 0
and t. Let J∗1 (t) be a size-biased pick from these jump sizes, and then let J∗2 (t)
be a size-biased pick from the remaining jump sizes. Let A be a Borel subset
of [0, 1]2 such that A ⊂ {(x, y) ∈ [0, 1]2 : 0 < x + y < 1− a} for some a > 0.
Then

lim
t→0

t−2P
((
J∗1 (t), J∗2 (t)

)
∈ A

∣∣ σα(t) = 1
)

=
∫

A

C2
α x−αy−α(1− x− y)−1−α

1− x
dxdy. (18)

Proof. Using (13), we see that

t−2P
((
J∗1 (t), J∗2 (t)

)
∈ A

∣∣ σα(t) = 1
)

=
∫

A

t−2xρt(x)yρt(y)ft(1 − x− y)
(1− x)ft(1)

dxdy

=
∫

A

C2
α x−αy−αft(1 − x− y)

(1− x)ft(1)
dxdy.
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Equation (12) gives

(1− x− y)−1−α
(

1−Dt(1 − a)−α

1 + Dt

)
� ft(1− x− y)

ft(1)

� (1 − x− y)−1−α
(

1 + Dt(1− a)−α

1−Dt

)
.

The lemma now follows from the Dominated Convergence Theorem. 
�

4 Small-time behavior of self-similar fragmentations

The proofs of Theorem 2 and Proposition 1 will use results on the small-time
behavior of self-similar fragmentations. In this section, we record some results
that we will need, and then we prove Proposition 2. First we give a way to
recover the dislocation measure ν of a self-similar fragmentation with positive
index and no erosion from its semigroup.

Proposition 3. Let (X(t), t � 0) be a ∆-valued self-similar fragmentation
with characteristics (β, 0, ν), where β � 0. For all t > 0, let µt be the measure
on ∆ defined by µt(A) = t−1P (X(t) ∈ A) for all Borel measurable subsets A
of ∆. Then µt converges weakly to ν as t→ 0 on any subset of ∆ that is the
complement of an open neighborhood of (1, 0, 0, . . . ).

We will need the following lemma in the course of the proof:

Lemma 5. Let (ξt, t � 0) be a subordinator with Lévy mesure L(dx). Then
the measure t−1P (ξt ∈ dx) converges to L(dx) as t → 0 weakly on any set
of the form (a,+∞) with a > 0. Moreover, denoting the jump ξu − ξu− at
time u by δξu, one has, as t→ 0,

P
(
ξt � a and δξu < a for all u ∈ [0, t]

)
= o(t).

Proof. The first part is classical, see e.g. [7]. For the second part, standard
properties of Poisson measures give

P
(
ξt � a and δξu � a for some u ∈ [0, t]

)
= tL

(
[a,∞)

)
+ o(t). (19)

On the other hand, the Portmanteau theorem (see [15]) and the first part
imply

lim sup
t→0

1
t
P (ξt � a) � L

(
[a,∞)

)
. (20)

Hence, dividing (19) by t and subtracting from (20) gives

lim sup
t→0

1
t
P
(
ξt � a and δξu < a for all u ∈ [0, t]

)
� 0. 
�



346 Grégory Miermont and Jason Schweinsberg

Proof of Proposition 3. Let Aδ = {x ∈ ∆ : x1 � 1− δ}. Any subset of ∆ that
is the complement of an open neighborhood of (1, 0, 0, . . . ) is a subset of Aδ
for some δ > 0. Therefore, it suffices to show that µt converges weakly to ν
on Aδ for all δ > 0. Fix δ > 0, and let G be a positive, bounded, continuous
function on ∆ such that G(x) = 0 for x /∈ Aδ. By the definition of µt and the
definition of weak convergence, we need to show that

lim
t→0

t−1E
[
G
(
X(t)

)]
=

∫

∆

G(s) ν(ds). (21)

Without loss of generality, suppose that X(t) = (X1(t), X2(t), . . . ) =
Λ(Π(β)(t)) for a partition-valued fragmentation process Π(β) with the same
characteristics as X . We may also assume that Π(β) is constructed by time-
changing a partition-valued fragmentation Π with characteristics (0, 0, ν) as
in Sect. 2. That is, if In(t) is the asymptotic frequency of the block of Π(t)
containing n and T

(β)
n (t) is defined as in (6), then i and j are in the same block

of Π(β)(t) if and only if i and j are in the same block of Π(T (β)
i (t)). Also, we

suppose that Π is constructed out of a Poisson point process ((Γt, kt), t � 0)
with intensity κ⊗# as in Sect. 2. Notice that for every i and t � 0, we have
T

(β)
i (t) � t because β > 0. It follows that (Π(β)(u), 0 � u � t) is completely

determined by the process ((Γu, ku), 0 � u � t).
Let (Θt, t � 0) be the process such that Θt = Γt whenever (Γt, kt) is a

point of the Poisson process such that kt is the least element of the block with
maximal asymptotic frequency of Π(t) at time t−. If two or more blocks are
tied for having the largest asymptotic frequency, we rank the blocks according
to their smallest elements. As a consequence of Lemma 10 in [6], Θ is a Poisson
point process with intensity κ.

Let Nt be the cardinality of {s ∈ [0, t] : Λ(Θs) ∈ Aδ}. Note that Nt has a
Poisson distribution with mean tν(Aδ). Therefore,

lim
t→0

t−1E
[
G
(
X(t)

)
1{Nt�2}

]
� lim

t→0
t−1‖G‖∞P (Nt � 2) = 0.

Next, note that E[G(X(t))1{Nt=0}] � ‖G‖∞P ({X1(t) � 1−δ}∩{Nt = 0}). If
π is a partition of N, let Λj(π) denote the asymptotic frequency of the block
of π having the jth-largest asymptotic frequency. Since β � 0, we have

X1(t) �
∏

0�u�t
Λ1(Θu) � 1−

∑

0�u�t

(
1− Λ1(Θu)

)
.

Since t �→
∑

0�u�t(1 − Λ1(Θu)) is a subordinator, it follows from Lemma 5
that P ({X1(t) � 1− δ} ∩ {Nt = 0}) = o(t). Therefore,

lim
t→0

t−1E
[
G
(
X(t)

)
1{Nt=0}

]
= 0.

Thus, to prove (21), it remains only to show that
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lim
t→0

t−1E
[
G
(
X(t)

)
1{Nt=1}

]
=

∫

∆

G(s) ν(ds). (22)

Let 0 < ε < 1/2, and let η > 0. Then there exists a positive number t0 such
that P (Ii(t0) < 1− ε) < η for every i � 1. Fix t < t0. On the event {Nt = 1},
define U such that Λ(ΘtU ) ∈ Aδ. Note that U has a uniform distribution on
[0, 1]. Define B to be the event that U � (1 − ε)β. Let B0 be the event that
I1(tU−) � 1 − ε. Fix J ∈ N. For 1 � j � J , let ij be the smallest integer
in the block of Π(tU) having the jth-largest asymptotic frequency, provided
that integer is in the same block as 1 at time tU−; otherwise, define ij = 0.
Let Bj be the event that either ij = 0 or |Iij (T (β)

ij
(t)) − Iij (tU)| � ε.

We have P (B |Nt = 1) = (1− ε)β . Also,

P (B0 |Nt = 1) � P
(
I1(t) � 1− ε

)
� 1− η .

If B and B0 occur, then
∫ tU

0

I1(s)−β ds � tU(1− ε)−β � t,

which implies that T (β)
1 (t) � tU . If, in addition, ij > 0, then tU � T

(β)
ij

(t) � t.

In this case |Iij (T (β)
ij

(t)) − Iij (tU)| � |Iij (t) − Iij (tU)| which, conditional
on B, B0, and Nt = 1, is less than or equal to ε with probability at least 1−η.
Thus,

P (B ∩B0 ∩B1 ∩ · · · ∩BJ |Nt = 1) � (1− ε)β − (J + 1)η .

Suppose B,B0, B1, . . . , BJ all occur. If ij = 0, then Xj(t) < ε and
Λj(ΘtU ) � ε/(1− ε), so |Xj(t)− Λj(ΘtU )| � 2ε. If ij > 0, then
∣∣∣Iij

(
T

(β)
ij

(t)
)
− Λj(ΘtU )

∣∣∣ �
∣∣∣Iij

(
T

(β)
ij

(t)
)
− Iij (tU)

∣∣∣ +
∣∣Iij (tU)− Λj(ΘtU )

∣∣

� ε + ε = 2ε.

Since the block of Π(β)(t) containing the integer ij has asymptotic frequency
Iij (T (β)

ij
(t)), it follows that |Xj(t)− Λj(ΘtU )| � 2ε. Thus, for t < t0,

P
(
|Xj(t)− Λj(ΘtU )| � 2ε for j = 1, . . . , J

∣∣ Nt = 1
)

� (1− ε)β − (J + 1)η .

By letting ε, η → 0 and applying Theorem 3.1 of [15], we can see that the
conditional distribution of (X1(t), . . . , XJ(t)) given Nt = 1 converges to the
distribution of (Λ1(ΘtU ), . . . ,ΛJ(ΘtU )). By properties of weak convergence
in ∆ (see chapter 4 of [15]), it follows that the conditional distribution of
X(t) given Nt = 1 converges as t → 0 to the distribution of Λ(ΘtU ), which
does not depend on t. Thus,
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lim
t→0

t−1E
[
G
(
X(t)

)
1{Nt=1}

]
= lim

t→0
t−1P (Nt = 1)E

[
G
(
X(t)

) ∣∣ Nt = 1
]

= lim
t→0

ν(Aδ) e−tν(Aδ) E
[
G
(
Λ(ΘtU )

)]

= lim
t→0

ν(Aδ) e−tν(Aδ)

∫

∆

G(s)
ν(Aδ)

ν(ds)

=
∫

∆

G(s) ν(ds),

which is (22). 
�
Remark 1. In this proposition and the following corollary, the assumption that
c = 0, β � 0 could be avoided. When c > 0, we may follow essentially the same
reasoning as above because the drift at rate c has little effect on the block
sizes for small t. When β < 0, however, the proof requires a more careful
analysis of the time-changes T (β)

i . We thus omit the proof here, as we are only
concerned with positive self-similarity indices.

From Proposition 3, we get the following result concerning the small-time
behavior of the asymptotic frequency of the block containing 1 in a partition-
valued fragmentation.

Corollary 1. Let (Π(t), t � 0) be a partition-valued self-similar fragmenta-
tion with characteristics (β, c, ν). Let λ(t) be the asymptotic frequency of the
block containing 1 at time t. For all t > 0, let γt be the measure on [0, 1]
defined by γt(A) = t−1P (λ(t) ∈ A) Let νi be the restriction of ν to the ith
coordinate. Let γ be the measure on [0, 1] defined by

γ(A) =
∞∑

i=1

∫

A

x νi(dx) (23)

for all A. Then, γt converges weakly to γ as t→ 0 on [a, 1− a] for all a > 0.

Proof. Let µt be the measure on ∆ defined by µt(A) = t−1P (Λ(Π(t)) ∈ A)
for all Borel measurable subsets A of ∆. Let µt,i be the restriction of µt to
the ith coordinate. Then,

γt(A) =
∞∑

i=1

∫

A

xµt,i(dx).

Let f be a bounded continuous function defined on [a, 1−a]. By Proposition 3,
µt,i converges weakly on [a, 1− a] to νi for all i. Therefore,

lim
t→0

∫ 1−a

a

f(x) γt(dx) = lim
t→0

∞∑

i=1

∫ 1−a

a

xf(x)µt,i(dx)

=
∞∑

i=1

lim
t→0

∫ 1−a

a

xf(x)µt,i(dx) =
∞∑

i=1

∫ 1−a

a

xf(x) νi(dx)

=
∫ 1−a

a

f(x) γ(dx),
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which implies the conclusion of the corollary. Note that interchanging the limit
and the sum is justified because µt,i([a, 1− a]) = 0 for all t whenever i > 1/a,
so only finitely many terms in the sum are nonzero. 
�

We now prove Proposition 2, which shows that the small-time behavior
of some self-similar fragmentations is related to the stable subordinator of
index α. In the case of homogeneous fragmentations, our results are similar
to the results in section 4 of [6]. Our arguments are also similar to those
in section 4 of [6], but we work here with partition-valued fragmentations
rather than ranked fragmentations and prove the result for self-similar frag-
mentations with a positive index of self-similarity in addition to homogeneous
fragmentations.

Proof of Proposition 2. Since the fragmentation (X(t), t � 0) is a binary
fragmentation with no erosion and positive index β, we have that 1−X1(t) =∑∞

i=2 Xi(t) for all t. Also, since σα is a pure-jump process, σα(1) =
∑∞
i=1 Ji(1).

Therefore, to show (4), it suffices to show that

t−1/α(X2(t), X3(t), . . .
)
→d

(
J1(1), J2(1), . . .

)
.

Therefore, it suffices to show that

t−1/α
(
X2(t), . . . , Xn+1(t)

)
→d

(
J1(1), . . . , Jn(1)

)
(24)

for all n ∈ N.
As in the proof of Proposition 3, we may suppose that X(t) = Λ(Π(β)(t))

for all t, where Π(β) is the partition-valued fragmentation with characteris-
tics (β, 0, ν) that is obtained from a homogeneous framgmentation Π , being
constructed out of a Poisson process ((Γt, kt), t � 0) with intensity κ⊗# as
in Sect. 2.

For all k ∈ N, let (r(k)
t , t � 0) be the Poisson point process on [0, 1/2]

with the property that r
(k)
t = r if and only if (Γt, kt) = (π, k) for some

π ∈ P such that the block of π with the second-largest asymptotic frequency
has asymptotic frequency r. Note that for all k, the Poisson point process
(r(k)
t , t � 0) has characteristic measure ν2(dx), where ν2 is the restriction

of ν to the second coordinate. For all j, let Kj(t) be the jth-largest point of
(r(1)
s , 0 � s � t). Let τj(t) be the time such that r

(1)
τj(t)

= Kj(t). Let Nj(t) be
the smallest integer which is in the same block as 1 in the partition Π(τj(t)−)
but is not in the same block as 1 in Π(τj(t)).

Define another Poisson point process (Θt, t � 0) whose characteristic mea-
sure has density

q(x) = Cα(s(x) ∨ 1)x−1−α.

We now construct two new Poisson point processes by marking, as described in
chapter 5 of [24]. Let (Θ(1)

t , t � 0) consist of the marked points of (Θt, t � 0)
when a point at x is marked with probability 1/(s(x) ∨ 1). Let (Θ(2)

t , t � 0)
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consist of the marked points of (Θt, t � 0) when a point at x is marked
with probability s(x)1[0,1/2](x)/(s(x) ∨ 1). Then, (Θ(1)

t , t � 0) is a Poisson
point process whose characteristic measure has density q1(x) = Cα x

−1−α,
and (Θ(2)

t , t � 0) is a Poisson point process whose characteristic measure has
density q2(x) = Cα x

−1−αs(x)1[0,1/2](x).
Let Lj(t) denote the jth largest point of (Θ(1)

s , 0 � s � t), and let K̃j(t)
denote the jth largest point of (Θ(2)

s , 0 � s � t). If the n largest points of
(Θs, 0 � s � t) are also points in both (Θ(1)

s , 0 � s � t) and (Θ(2)
s , 0 � s � t),

then Lj(t) = K̃j(t) for j = 1, . . . , n. For all x > 0, the probability that
the largest point of (Θs, 0 � s � t) is less than x approaches 1 as t → 0.
Since limx→0 s(x) = 1, we have limx→0 s(x)1[0,1/2](x)/(s(x) ∨ 1) = 1 and
limx→0 1/(s(x) ∨ 1) = 1. It follows from these observations that

lim
t→0

P
(
Lj(t) = K̃j(t) for j = 1, . . . , n

)
= 1. (25)

Note that (L1(t), . . . , Ln(t)) has the same distribution as the sizes of the n
largest jumps of (σα(s), 0 � s � t). By scaling properties of the stable subor-
dinator of index α, it follows that

t−1/α
(
L1(t), . . . , Ln(t)

)
=d

(
J1(1), . . . , Jn(1)

)
. (26)

Since (K̃1(t), . . . , K̃n(t)) =d (K1(t), . . . ,Kn(t)), It follows from equations (25)
and (26), and Theorem 3.1 in [15] that

t−1/α
(
K1(t), . . . ,Kn(t)

)
→d

(
J1(1), . . . , Jn(1)

)
(27)

as t→ 0 for all n ∈ N.
Let ε > 0. We will show next that for all n ∈ N, we have

lim
t→0

P
(∣∣t−1/αKj(t)− t−1/αXj+1(t)

∣∣ < ε for j = 1, . . . , n
)

= 1. (28)

Equations (27) and (28), combined with Theorem 3.1 of [15], establish (24),
which suffices to prove Proposition 2.

Given 0 < δ < 1/2 and i ∈ N, let λit be the asymptotic frequency of the
set of all integers m such that m is in the same block as i in every partition
π for which Γs = π and ks = i for some s ∈ [0, t]. Let Aiδ,t be the event that
λit > 1− δ. If A1

δ,t occurs, then the block of Π(t) containing 1 has asymptotic
frequency at least 1− δ. Also, since β � 0, it follows that T βi (t) � t for every
i � 1. Therefore, taking i = 1, if A1

δ,t occurs, the block of Π(β)(t) containing 1
has asymptotic frequency at least 1− δ.

Let Bj,t be the event that τj(t) � T β1 (t). Note that this is the same as
the event that τj(t) � T βNj(t)

(t) because 1 and Nj(t) are in the same block

before time τj(t). Suppose A1
δ,t occurs, and suppose A

Nj(t)
δ,t and Bj,t occur for

j = 1, . . . , n. Then, for j = 1, . . . , n, the block of Π(τj(t)−) containing Nj(t)
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has asymptotic frequency between 1− δ and 1, the block of Π(τj(t)) contain-
ing Nj(t) has asymptotic frequency between Kj(t)(1− δ) and Kj(t), and the
asymptotic frequency of the block of Π(β)(t) containing Nj(t) has asymptotic
frequency between Kj(t)(1 − δ)2 and Kj(t). Furthermore, the largest of all
blocks of Π(β)(t) not containing any of the integers {1, N1(t), . . . , Nn(t)} has
asymptotic frequency at most max{δK1(t),Kn+1(t)}. Indeed, this block could
be obtained from the n + 1-th largest fragmentation of the fragment contain-
ing 1, which since δ < 1/2 is also the largest one, in which case its asymptotic
frequency is at most Kn+1(t). Alternatively, it could be obtained from one of
the fragments containing some Nj(t) for 1 � j � n. Since we assume that
A
Nj(t)
δ,t occurs for every 1 � j � n, the size of these fragments can not be

reduced by more than a factor of 1 − δ. Therefore, at time t, the fragments
that do not contain any of the Nj(t), for 1 � j � n, but are obtained by
splitting the blocks containing one of the Nj(t), 1 � j � n, have asymptotic
frequency smaller than δKj(t) � δK1(t).

Therefore, if in addition δK1(t) < Kn(t), then

Kj(t)(1 − δ)2 � Xj+1(t) � Kj(t) (29)

for j = 1, . . . , n.
Note that limt→0 P (A1

δ,t) = 1 for all δ ∈ (0, 1/2). Likewise, for all j ∈ N

and δ ∈ (0, 1/2), we have limt→0 P (ANj(t)
δ,t ) = 1. We now prove that

lim
t→0

P (Bj,t) = 1. (30)

Let ε > 0. Choose δ small enough that 1−(1−δ)β < ε/2. Then choose t small
enough that P (A1

δ,t) > 1 − ε/2. Suppose A1
δ,t occurs. Then the fragment of

Π(s) containing 1 has asymptotic frequency larger than 1− δ for 0 � s � t.
It follows from (6) that

(1− δ)βt � T β1 (t) � t.

Since τj(t) is uniform on (0, t), we have P (Bj,t |A1
δ,t) > 1−ε/2. Since P (A1

δ,t) >
1− ε/2, it follows that P (Bj,t) > 1− ε, which implies (30). Last, by (27),

lim
δ→0

lim
t→0

P
(
δK1(t) < Kn(t)

)
= 1.

These results, combined with (29), prove (28). 
�

5 Large-time behavior of self-similar fragmentations

In [12], Bertoin studied the asymptotic behavior of self-similar fragmentations
as t → ∞. Using facts from [14] about semi-stable processes, he proved the
following result.
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Lemma 6. Let (X(t), t � 0) = ((X1(t), X2(t), . . . ), t � 0) be a self-similar
fragmentation with characteristics (β, c, ν). Suppose ν({x :

∑∞
i=1 xi < 1}) = 0.

Also assume that there exists no r > 0 such that the size of every fragment at
time t > 0 lies in the set {e−kr : k = 0, 1, . . . }. For q � 0, define

Φ(q) = c(q + 1) +
∫

∆

(
1−

∞∑

i=1

xq+1
i

)
ν(dx). (31)

Assume that

Φ′(0+) = c +
∞∑

i=1

∫

∆

xi log(1/xi) ν(dx) <∞. (32)

If β = 0, then limt→∞ t−1 log(X1(t)) exists and is finite almost surely. If
β > 0 and c = 0, define

µt =
∞∑

i=1

Xi(t)δt1/βXi(t).

Then, the random probability measures µt converge in probability as t → ∞
to a deterministic limit µ∞, for the weak topology on measures. Furthermore,
for k ∈ N, we have

∫ ∞

0

yβkµ∞(dy) =
1

β Φ′(0+)

k−1∏

i=1

i

Φ(iβ)
. (33)

Suppose the hypotheses of Lemma 6 are satisfied, and that β > 0 and c = 0.
Let λ(t) be a size-biased pick from the sequence X(t) = (X1(t), X2(t), . . . ).
Note that µt is the conditional distribution of t1/βλ(t) given X(t). The proof
of the convergence in probability of µt to µ∞ in [12] actually shows that for
every f continuous and bounded, we have

lim
t→∞

E

[∫ ∞

0

f(y)µt(dy)
]

=
∫ ∞

0

f(y)µ∞(dy).

Therefore, the unconditional distributions γt of t1/βλ(t), given by

γt(B) = E[µt(B)],

converge weakly to µ∞ as t→∞.

6 One-dimensional distributions

Our goal in this section is to prove Theorem 2. The first step is Lemma 7.
Once this lemma is proved, there is, for each α ∈ (0, 1), only one remaining
candidate for a self-similar fragmentation that could satisfy (2). To prove
Theorem 2, we then only need to show that this fragmentation does indeed
satisfy (2) only when α = 1/2.
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Lemma 7. Fix α ∈ (0, 1). Suppose (X(t), t � 0) is a self-similar fragmen-
tation with characteristics (β, c, ν) such that (2) holds. Then β = 1 − α and
c = 0. Also, (X(t), t � 0) is binary, and the restriction ν1 of ν to the first
coordinate has density hα(x) = Cα x

−1−α(1− x)−1−α1[1/2,1](x).

Proof. Write the components of X(t) as (X1(t), X2(t), . . . ). Let J1(t), J2(t), . . .
be the jump sizes of σα up to time t. Note that

∑∞
i=1 Ji(t) = σα(t), so the

conditional distribution of
∑∞

i=1 Ji(t) given σα(t) = 1 is a unit mass at 1.
Therefore, if (2) holds, we must have

∑∞
i=1 Xi(t) = 1 almost surely. It follows

from the construction in Sect. 2 that c = 0. Also, by section 3.3 of [12], we
have β � 0.

Let λ(t) be a size-biased pick from the sequence (X1(t), X2(t), . . . ). It
follows from Lemma 2 that if (2) holds, then the distribution of t1/(1−α)λ(t)
converges to a nondegenerate limit. Combining this result with Lemma 6, we
get β = 1− α.

Suppose, for some a > 0, we have ν({x ∈ ∆ : x1 + x2 < 1 − a}) = b > 0.
Then, by Proposition 3 and the Portmanteau Theorem,

lim inf
t→0

t−1P
(
X1(t) + X2(t) < 1− a

)
� b.

Therefore, if (2) holds, then

lim inf
t→0

t−1P
(
J1(t) + J2(t) < 1− a

)
� b.

Let J∗1 (t) be a size-biased pick from the jump sizes J1(t), J2(t), . . . , and let
J∗2 (t) be a size-biased pick from the remaining jump sizes. Note that J∗1 (t) +
J∗2 (t) � J1(t) + J2(t), so

lim inf
t→0

t−1P
(
J∗1 (t) + J∗2 (t) < 1− a

)
� b. (34)

However, Lemma 4 implies that if A = {(x, y) ∈ [0, 1]2 : 0 < x + y < 1 − a},
then

lim
t→0

t−2P
(
J∗1 (t)+J∗2 (t) < 1−a

)
=

∫

A

C2
α x−αy−α(1 − x− y)−1−α

1− x
dxdy <∞,

which contradicts (34). We conclude that ν({x ∈ ∆ : x1 + x2 < 1 − a}) = 0
for all a > 0, which means X is a binary self-similar fragmentation.

Let µt be the measure on ∆ defined by µt(A) = t−1P (X(t) ∈ A). By
Proposition 3, as t → 0, µt converges weakly on complements of open neigh-
borhoods of (1, 0, . . . ) to ν. Let µ̃t be the measure defined by µ̃t(B) =
t−1P (X1(t) ∈ B). Let ν1 be the restriction of ν to the first coordinate. Then
µ̃t converges weakly on [0, a] to ν1 as t→ 0 for any a < 1. It follows that

lim
t→0

t−1P
(
X1(t) ∈ [0, a]

)
= lim
t→0

µt([0, a]) = ν1([0, a]) (35)
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for all a ∈ [0, 1) (the only interesting case is a > 1/2 since ν1 does not support
[0, 1/2]) such that the function x �→ ν1([0, x]) is continuous at a. If (2) holds,
then we can combine (35) with (17) to obtain

∫ a

0

hα(x) dx = ν1([0, a])

for all a ∈ (1/2, 1) such that x �→ ν1([0, x]) is continuous at a. Thus, hα is the
density of ν1. 
�

The binary self-similar fragmentation whose characteristics are (1/2, 0, ν),
where the restriction of ν to the first coordinate has density h1/2, is the
Aldous–Pitman fragmentation. Therefore, Theorem 2 follows immediately
from Lemma 7 and the following lemma.

Lemma 8. Let (X(t), t � 0) be a binary self-similar fragmentation with char-
acteristics (1 − α, 0, ν), where the restriction of ν to the first coordinate has
density hα. If (2) holds, then α = 1/2.

Proof. Let λ(t) be a size-biased pick from the sequence of X(t). Let β = 1−α.
Let γt be the law of t1/(1−α)λ(t) = t1/βλ(t). Then, by results in Sect. 5, γt
converges weakly to some measure µ∞ as t → ∞. Also, for all k ∈ N, (33)
gives

∫ ∞

0

yβk µ∞(dy) =
1

β Φ′(0+)

k−1∏

i=1

i

Φ(iβ)
,

where Φ is the function defined in (31).
Suppose (2) holds. By Lemma 2, µ∞ is the Gamma(1 − α, Bα/(1 − α))

distribution. By (15),

∫ ∞

0

yβk µ∞(dy) =
Γ (βk + 1− α)

Γ (1− α)

(
cos(πα/2)

α

)βk/(1−α)

=
Γ (βk + β)

Γ (β)

(
cos(πα/2)

α

)k

for all k ∈ N. It follows that

1
β Φ′(0+)

k−1∏

i=1

i

Φ(iβ)
=

Γ (βk + β)
Γ (β)

(
cos(πα/2)

α

)k
(36)

for all k ∈ N. By considering (36) for k + 1 and k and taking the ratio of the
two equations, we get

Γ (βk + 2β)
Γ (βk + β)

(
cos(πα/2)

α

)
=

k

Φ(kβ)
. (37)

Since α/ cos(πα/2) = Cα Γ (1− α) = Cα Γ (β) by (8), equation (37) implies
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Φ(kβ) =
Cα kΓ (β)Γ (βk + β)

Γ (βk + 2β)
. (38)

By Stirling’s Formula,

lim
k→∞

(kβ)βΓ (βk + β)
Γ (βk + 2β)

= 1.

Combining this result with (38), we get

lim
k→∞

kβ−1Φ(kβ) = Cα Γ (β)β−β . (39)

We will now compute limk→∞ kβ−1Φ(kβ) directly from (31). We will show
that the result agrees with the right-hand side of (39) only when β = 1/2,
which will prove the lemma. Using the definitions of ν and hα, equation (31),
and the fact that c = 0, we have

Φ(kβ) =
∫

∆

(
1−

∞∑

i=1

xkβ+1
i

)
ν(dx)

= Cα

∫ 1/2

0

(
1− xkβ+1 − (1− x)kβ+1

)
xβ−2(1− x)β−2 dx.

By making the substitution y = kx, we get

kβ−1Φ(kβ) = Cα

∫ k/2

0

(
1− (k−1y)kβ+1 − (1− k−1y)kβ+1

)

× yβ−2(1− k−1y)β−2 dy.

Note that for each fixed y > 0,

lim
k→∞

(
1− (k−1y)kβ+1 − (1 − k−1y)kβ+1

)
yβ−2(1− k−1y)β−21[0,k/2](y)

= (1 − e−βy)yβ−2.

If 0 � y � k/2, then (1 − k−1y)β−2 � 22−β � 4. Also, if 0 < y < 1/2, then
k �→ (1− k−1y)kβ+1 is an increasing function, and therefore 1− (k−1y)kβ+1−
(1− k−1y)kβ+1 � 1− (1− y)β+1 � 1− (1− y)2 � 2y. Therefore, for all k ∈ N,

(
1− (k−1y)kβ+1 − (1 − k−1y)kβ+1

)

× yβ−2(1− k−1y)β−21[0,k/2](y) � 4(2y ∧ 1)yβ−2,

and
∫∞
0 4(2y ∧ 1)yβ−2 dy <∞. Hence, by the Dominated Convergence Theo-

rem,

lim
k→∞

kβ−1Φ(kβ) = Cα

∫ ∞

0

(1− e−βy)yβ−2 dy.

Integrating by parts, we get
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lim
k→∞

kβ−1Φ(kβ) =
Cα β

1− β

∫ ∞

0

yβ−1e−βy dy =
Cα β

1− β
Γ (β)β−β . (40)

Combining (39) and (40), we get β/(1 − β) = 1, which means β = 1/2 and
therefore α = 1/2, as claimed. 
�

7 Mass of a tagged fragment

Our goal in this section is to prove Proposition 1, which pertains to the dis-
tribution of the asymptotic frequency of the block containing 1 in a partition-
valued self-similar fragmentation or, equivalently, the distribution of a size-
biased pick from a self-similar ranked fragmentation.

According to [11], the tagged fragment in a self-similar fragmentation with
index β has to be the inverse of some increasing semi-stable Markov process
of index 1/β started at 1. A semi-stable Markov process with index 1/β > 0 is
a real-valued strong Markov process X satisfying the following self-similarity
property. If, for x > 0, Px denotes the law of X starting from X0 = x, then
for every k > 0, the law of the process (kX(k−βs), s � 0) under Px is the
same as the law of (X(s), s � 0) under Pkx.

Lemma 9. Let G(x, s) be a function defined on [0,∞)2 which is increasing
in x and s. Suppose that there exists a semi-stable Markov process X with
index 1/β such that (G(x, σα(t)), t � 0) has the law of X started at x. Then
G is of the form

G(x, s) =
(
xβ/α + Ks

)α/β

for some K > 0.

Proof. By the scaling property, we have
(
kG

(
x, σα(k−βt)

)
, t � 0

)
=d

(
kG

(
x, k−β/ασα(t)

)
, t � 0

)
(41)

for all k > 0. Since X is a semi-stable Markov process with index 1/β, we
have for all k > 0,

(
kG

(
x, σα(k−βt)

)
, t � 0

)
=d

(
G
(
kx, σα(t)

)
, t � 0

)
. (42)

Given k and x, define f1(s) = kG(x, k−β/αs) and f2(s) = G(kx, s). Then,
f1 and f2 are increasing functions, and equations (41) and (42) imply that
f1(σα(t)) =d f2(σα(t)) for all t > 0. For an increasing function f , define
f−1(z) = sup{x : f(x) � z}. We have P (f1(σα(t)) � z) = P (f2(σα(t)) � z),
which means P (σα(t) � f−1

1 (z)) = P (σα(t) � f−1
2 (z)). Since for all t > 0

the density of σα(t) is positive on (0,∞), it follows that f−1
1 (z) = f−1

2 (z)
for all z. Therefore, if f1(s) < f2(s), then f2(u) � f1(s) for all u < s, and
f1(u) � f2(s) for all u > s. It follows that both f1 and f2 have a jump at s.
Thus, f1(s) = f2(s) for all but countably many s. Let g(s) = G(1, s). Then,
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for all x, we have G(x, s) = xg(x−β/αs) for all but countably many s. For any
fixed s > 0, we have P (σα(t) �= s for all t) = 1. Therefore, with probability
one, G(x, σα(t)) = xg(x−β/ασα(t)) for all t. Thus, X under Px has the same
law as (xg(x−β/ασα(t)), t � 0) for some increasing function g.

By the Markov property,

Py
(
X(t) � z

)
=d Px

(
X(s + t) � z

∣∣ X(s) = y
)
.

We have Py(X(t) � z) = P (σα(t) � yβ/αg−1(z/y)). Also,

Px
(
X(s + t) � z

∣∣ X(s) = y
)

= P
(
σα(s + t) � xβ/αg−1(z/x)

∣∣ σα(s) = xβ/αg−1(z/y)
)

= P
(
σα(t) � xβ/α

(
g−1(z/x)− g−1(y/x)

))
.

It follows that for every x � y � z, we have

xβ/α
(
g−1

( z

x

)
− g−1

(y
x

))
= yβ/αg−1

(z
y

)
.

Writing u = y/x and v = z/y gives that for every u, v � 1, we have

g−1(uv) = uβ/αg−1(v) + g−1(u).

Taking u = x and v = 2, we get g−1(2x) = xβ/αg−1(2) + g−1(x). Taking
u = 2 and v = x, we get g−1(2x) = 2β/αg−1(x) + g−1(2). It follows that
g−1(x)(2β/α − 1) = g−1(2)(xβ/α − 1), which means g−1(x) = L(xβ/α − 1) for
some L > 0. Thus, g(s) = G(1, s) = (1 + Ks)α/β for all s, where K = L−1. It
follows that for all x, we have G(x, s) = xG(1, x−β/α(s)) = (xβ/α + Ks)α/β

for all but countably many s. Since G is increasing in x and s, we conclude
that G(x, s) = (xβ/α + Ks)α/β for all x and s. 
�

Proof of Proposition 1. Suppose that λ(t) is of the form g(σα(t)) for some
decreasing function g. By Lemma 9 and the preceding discussion, g must be
of the form g(x) = (1 + Kx)−α/β for some β > 0.

Set h(x) = g−1(x) = K−1(x−β/α− 1). Then h′(x) = −βK−1x−(β/α)−1/α.
Let ft be the density of σα(t), and let f = f1. Then the density of λ(t) is
given by

k(x) = ft
(
h(x)

)
|h′(x)| = f

(
t−1/αK−1(x−β/α − 1)

)
t−1/α β

α
K−1x−(β/α)−1

for all x ∈ (0, 1). Note that

(
t−1/αK−1(x−β/α − 1)

)−1−α
t−1/αK−1x(−β/α)−1 = tKαxβ−1(1− xβ/α)−1−α.

Therefore, it follows from (12) and the Dominated Convergence Theorem that
if A is a Borel subset of [a, 1− a] where a > 0, then



358 Grégory Miermont and Jason Schweinsberg

lim
t→0

t−1P
(
λ(t) ∈ A

)
=

∫

A

a1
Kαβ

α
xβ−1(1 − xβ/α)−1−α dx, (43)

where a1 is given in (11).
Let νi be the restriction of ν to the ith coordinate, and let γ be the

measure defined by (23). By (43) and Corollary 1, γ is the measure on [0, 1]
with density a1K

αβα−1xβ−1(1−xβ/α)−1−α for x ∈ (0, 1). Since Π is a binary
fragmentation process,

γ(A) =
∫

A∩[1/2,1]

x ν1(dx) +
∫

A∩[0,1/2]

x ν2(dx).

Therefore, ν1 has density k1(x) = a1K
αβα−1xβ−2(1 − xβ/α)−1−α1[1/2,1](x),

while ν2 has density k2(x) = a1K
αβα−1xβ−2(1 − xβ/α)−1−α1[0,1/2](x). How-

ever, since ν is concentrated on the set {x : x1 + x2 = 1}, we must have
k1(x) = k2(1− x) for all x. This gives that

(
1− xβ/α

1− (1− x)β/α

)−1−α
=

(1− x)β−2

xβ−2
.

Comparing asymptotic behavior as x → 0, we get β = α and then α =
1/2. Note that a1 = (2π)−1/2 = C1/2 when α = 1/2. Thus, ν1(dx) =
(2π)−1/2K1/2x−3/2(1 − x)−3/21[1/2,1](x) dx, which means that (Λ(Π(t)), t �
0) is the Aldous–Pitman fragmentation up to a multiplicative time constant,
as claimed. 
�
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Statist., 38, 319–340.

12. Bertoin, J. (2001): The asymptotic behavior of fragmentation processes.
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