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Summary. We give a characterization of the eigenvalues of Markov operators which
admit an orthogonal polynomial basis as eigenfunctions, in the Hermite and the
Laguerre cases, as well as for the sequences of orthogonal polynomials associated to
some probability measures on N. In the Hermite case, we also give a description of
the path of the associated Markov processes, as well as a geometric interpretation.

1 Introduction

The aim of this work is to describe all reversible Markov operators on R,
which have a spectral decomposition along some families of orthogonal poly-
nomials. For any exponentially integrable probability measure on R (or on an
interval), there is a natural family of orthogonal polynomials which forms a
L2-basis. The question arises to classify all Markov processes associated to
this family, and more precisely we shall require this family of polynomials to
be the spectral decomposition of some Markov operator, or of some generator
of a Markov semigroup. There are many examples of this situation, where one
may describe all possible eigenvalues. Among them the Hermite polynomials,
the Laguerre polynomials, the Jacobi ones, and many other examples also in
the discrete case, that is, when the underlying measure is carried by a discrete
set. The question of whether or not there exists a Markov generator associ-
ated to a given family of orthogonal polynomials seems out of reach in such
generality. The only known result in this direction is when a diffusion gen-
erator is associated to a family of orthogonal polynomials ([9]); in this case,
the classification is quite simple, and the only classes of polynomials are the
classical ones: the Hermite, Laguerre and Jacobi polynomials. (But there are
many more examples, like Mexnier, Charlier and Hahn polynomials, which
are not associated with diffusion operators.)
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The problem then arises in those cases to describe all Markov operators
associated to these different families. The case of Jacobi processes was com-
pletely resolved in [8], through the use of the underlying associated hypergroup
structure. In the cases of Laguerre and Hermite polynomials, this underlying
structure fails to be valid, because the support of the reference measure is not
compact. But in some sense, this makes the classification simpler, since there
is a kind of degenerate hypergroup structure which is always valid, with the
Dirac mass at infinity playing the rôle of identity.

More precisely, we consider a probability measure µ on R, such that∫
exp(α|x|)µ(dx) < ∞ for some α > 0, and we assume that the measure

µ is not supported by a finite set. Then we know that the set of polynomi-
als is dense in L2(µ), and therefore there is an L2 basis made of a sequence
(Pn) of orthogonal polynomials, Pn being of degree n; and this sequence is
unique provided we assume the leading coefficient of Pn to be positive and
the polynomials to have norm 1 in L2(µ).

A Markov operator, defined by a kernel of probability measures K(x, dy),
is defined on all positive or bounded functions on R by

K(f)(x) =
∫

f(y)K(x, dy).

It maps positive functions into positive functions, and is such that K(1) = 1.
We are interested here in such Markov operators which are bounded on L2(µ)
and have the property that K(Pn) = cnPn, for some sequence (cn) of real
numbers. This just means that the Markov operator K is symmetric in L2(µ)
and has the family (Pn) as spectral decomposition.

For simplicity, we shall call such a sequence a Markov sequence associated
to the family (Pn).

In the same way, we shall say that a sequence (λk) is a Markov generator
sequence if, for every t > 0, the sequence (e−λkt) is Markov. In this case, the
family of Markov operators with eigenvalues (e−λkt) is a Markov semigoup,
and the family (λk) is the eigenvalues of its generator.

When (cn) is a Markov sequence, the operator K is a symmetric opera-
tor on L2(µ), is a contraction in L2(µ), and therefore the sequence (cn) lies
in [−1, 1]. If the sequence (cn) is square summable, then the operator K is
Hilbert–Schmidt, and

K(x, dy) =
(∑

n

cnPn(x)Pn(y)
)
µ(dy),

where the kernel k(x, y) =
∑

n cnPn(x)Pn(y) is in L2(µ⊗ µ) and positive.
The purpose of this work is to provide a description of all possible se-

quences (cn) associated to Markov operators, in many different situations.
For pedagogical reasons, we first give the classification in the case of the Ja-
cobi polynomials, and then show how the method carries over to the non
compact case for a quite general family of orthogonal polynomials.
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2 The Jacobi Polynomials Case

Gasper ([8]) gave the complete classification of Markov sequences for the Ja-
cobi polynomials (which depend on two parameters α and β), through the use
of an hypergroup structure, that is, a proper convolution of measures. These
Jacobi polynomials in the symmetric case (α = β) are the ultraspherical poly-
nomials (obtained, when n is an integer, from projections of spheres).

Let us consider the probabilized interval ([−1, 1], µ), with

µα,β(dx) = µ(dx) = C(1− x)α(1 + x)β dx,

α > −1, β > −1, C being a normalization constant. The corresponding family
of orthogonal polynomials is the family (Jα,βk )k∈N of Jacobi polynomials. They
also may be defined via their generating series:

2α+βA−1/2
(
1− t + A1/2

)−α(1 + t + A1/2
)−β =

+∞∑

k=0

tkhα,βk Jα,βk (x),

where A = A(x, t) = 1− 2xt + t2 and

(hα,βk )
2

= k!
2k + α + β + 1

α + β + 1
Γ (α + 1)

Γ (k + α + 1)
Γ (β + 1)

Γ (k + β + 1)
Γ (k + α + β + 1)
Γ (α + β + 1)

.

(See [12], p. 69).
They satisfy the differential equation

(
1− x2

)
P ′′k +

(
β − α− x(α + β + 2)

)
P ′k = −k(k + α + β + 1)Pk.

Thus they are the eigenvectors for the operator

Lα,β(f) =
(
1− x2

)
f ′′ +

(
β − α− x(α + β + 2)

)
f ′, (1)

with eigenvalues λk = −k(k + α + β + 1). Therefore, for every t > 0, the
sequence ck = exp(−tλk) is a Markov sequence for this family.

Since they are the orthogonal polynomials associated with a measure sup-
ported by [−1, 1], it is not hard to see, by the usual property of interlacing of
zeros, that the sequence (Pk(1)) is always positive. In fact, the maximum of
Pk on [−1, 1] is always attained at the point x = 1.

In [7] and [8], Gasper gave a complete representation of the Markov se-
quences related to the family of Jacobi polynomials, extending a result of
Bochner ([3]) in the particular case α = β, which is related to the ultraspher-
ical polynomials:

Proposition 1. Assume that α � β > −1, with either β � −1/2, or α � −β.
Then, the sequence (cn) is Markov with respect to the family (Pn) if and only
if there is a probability measure ν on [−1, 1] such that

ck =
1

Pk(1)

∫ 1

−1

Pk(x) ν(dx).
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Proof. For α > −1/2 and α � β � 1/2, the proof relies on the following
important property: the series

K(x, y, z) =
∑

k

Pk(x)Pk(y)Pk(z)/Pk(1)

is convergent (in (L2(µ⊗3)) and the sum is positive.
By construction, this kernel is symmetric and has integral 1 with respect

of any of its variables.
Therefore, there is an explicit representation

Pn(x)Pn(y) = Pn(1)
∫

Pn(z)K(x, y, z)µ(dz),

and ∫
Pn(x)Pk(y)K(x, y, z)µ(dx)µ(dy) = δn,kPn(z)/Pn(1).

We then may define a convolution of probability measures as

ν1 ∗ ν2(dz) =
(∫

x,y

K(x, y, z) ν1(dx) ν2(dy)
)
µ(dz),

which is commutative and satisfy

ν ∗ δ1 = ν,

as may be seen directly when ν has an L2(µ) density f with respect to µ. The
fact that the result is a probability measure is the fact that the integral of the
kernel K with respect to z is 1.

We may as well define the convolution between a measure and an integrable
function, identifying a function f with the (non-necessarily positive) measure
f(x)µ(dx). We then have δ1 ∗ f = f .

If ν is a bounded measure, then ν ∗ Pn = cnPn, where

cn =
1

Pn(1)

∫
Pn(y) ν(dy).

Now, if an operator K is Markov and symmetric with respect to µ, we
may define as well the action of K on probability measures, and we see that

K(ν1 ∗ ν2) = K(ν1) ∗ ν2 = ν1 ∗K(ν2).

To see this, we may restrict ourselves to the case where ν1 and ν2 have L2

densities with respect to µ; in that case this is immediate in the L2-basis (Pn),
starting from KPn = cnPn.

Therefore, the Markov kernel K has the following representation

K(f) = K(δ1 ∗ f) = K(δ1) ∗ f,

and the probability measure ν = K(δ1) gives the representation. 
�



64 Dominique Bakry and Olivier Mazet

Of course, the basic tool used in the preceding proof, namely the positiv-
ity of the kernel K(x, y, z), is indeed a quite deep result. Observe that the
existence of this kernel amounts to saying that, for almost every x, (with
respect to the reference measure), the sequence (Pn(x)/Pn(1)) is Markov.
Since Markov sequences are bounded by 1, this implies that the maxima of
the polynomials (Pn) are attained at 1. In any case, the possibility to find
Markov sequences of the form cnPn(x) implies that the polynomials (Pn) are
bounded, and therefore that the support of the reference measure is compact.

In order to understand where this convolution comes from, we shall con-
centrate on the case where α = β is a half-integer. We shall see that this
property is in fact a by-product of the spectral decomposition of the spherical
Laplace operator on spheres.

First, consider the unit sphere Sn−1 in R
n, with n � 2, equipped with its

uniform probability measure σ. We may project this measure on the interval
[−1, 1], which is identified with the diameter of the sphere carried by the first
unit vector e1 of R

n. Then, this measure is µα,α, with α = (n− 3)/2.
Moreover, if we take a smooth function f on [−1, 1], and if we lift it on

the sphere through the map just described here, say F (x) = f ◦ Φ(x), then
∆F = Lα,α(f) ◦Φ where ∆ is the Laplace operator on the sphere. Therefore,
the Jacobi polynomials (in this case the ultraspherical polynomials) may be
lifted to eigenvectors of the Laplace operator on the sphere.

Now, in the same way, we may lift a measure on [−1, 1] into a measure
on the sphere. We shall say that such a lifted measure is radial around e1. If
we take any rotation which maps e1 onto another point x of the sphere, the
image of a radial measure is radial around x, and this image does not depend
on the choice of the rotation (since it is radial). Therefore, for any point x of
the sphere, and any radial measure ν around e1, we may define in a unique
way a radial measure Rxν around x. Now, to define the convolution of two
probability measures ν1 and ν2, we may first lift those two measures on the
sphere into radial measures m1 and m2, consider a random variable X1 with
law m1, and construct a new random variable Y such that its conditional law
given X1 is RX1m2. It turns out that this new random variable has a law
which is radial around e1. Its projection on [−1, 1] is ν1 ∗ ν2.

Now, if we want to take the convolution of two functions, then we see by
construction that

f ∗ g(x) =
∫

Sn−1(1)

f(x · y)g(y · e1)σ(dy), (2)

where x·e denotes the scalar product in R
n. From this we see that convolution

is symmetric.
Now, for any x ∈ Sn−1, the function y �→ Pk(x · y) is an eigenvector of the

Laplace operator of the sphere, with eigenvalue −k(k + n− 2) (we know the
result by projection when x = e1, and everything is invariant by rotation).

Moreover, it is quite easy to observe that
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∫
Pk(x · y)Pl(y · e)σ(dy) = δk,lPk(1)Pk(x · e).

Therefore, we get
Pk ∗ Pl = δk,lPk(1)Pk,

and the convolution is the one we were looking for.
Although it is not necessary, the previous construction gives us a way to

compute the kernel in this case, which is

K(t, r, s)µ(ds) = δs ∗ δt,

from which we get

Kn(t, r, s) = κn
(1− r2 − s2 − t2 + 2rst)(n−4)/2

(1− s2)(n−3)/2(1− r2)(n−3)/2(1 − t2)(n−3)/2

× 1{1−r2−s2−t2+2rst�0}. (3)

3 The Non Compact Setting

Following the same scheme, we shall now investigate a number of examples of
orthogonal polynomials associated with non compactly supported measures.
In this situation, there is no valid hypergroup structure, but in some sense it
makes things simpler. The reason is, in this situation the point 1, which is the
point at which every polynomial in the Jacobi family achieves its maximum,
is then pushed at infinity.

We shall restrict ourselves to the following situation.
The reference measure µ is not supported by any interval (−∞,M ], is

exponentially integrable as described in the introduction (that is, there exists
some constant ε > 0 such that

∫
exp(ε|x|)µ(dx) < ∞). We call (Pn) the

sequence of orthogonal polynomials associated to it, with leading coefficient
dn > 0. As before, we shall call a bounded sequence (cn) Markov if c0 = 1
and if the linear operator K defined on L2(µ) by K(Pn) = cnPn preserves
positivity. We define in the same way a Markov generator sequence (λk) by
the fact that, for every t > 0, (exp(−λkt)) is a Markov sequence.

Our basic assumption is the following:
There exists a Markov generator sequence (λk) such that for every t > 0,∑
k e−λkt <∞.
In this case, we shall call Pt the Markov operator associated with the se-

quence (exp(−λkt)). Because of the summation hypothesis on (exp(−λkt)), we
know that Pt is a Hilbert–Schmidt operator, and therefore may be represented
as

Pt(f)(x) =
∫

Kt(x, y)f(y)µ(dy),

with
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Kt(x, y) =
∑

k

exp(−λkt)Pk(x)Pk(y).

This series converges in L2(µ⊗µ) and the sum is almost everywhere positive.
Moreover, almost everywhere in the product,

Kt(x, y)2 � K2t(x, x)K2t(y, y),

and the integral ∫

x

Kt(x, x)µ(dx) =
∑

k

e−λkt <∞.

Since the function Kt(x, x) is defined almost everywhere, we have to be a
bit careful about convergence. We shall say that a function f converges almost
everywhere (for µ) to 0 at infinity if the sequence of functions fN = f1[N,∞)

converges almost surely to 0 when N goes to infinity. In most cases, this will
be irrelevant since we shall be able to find a “good” version of Kt(x, x) (say
continuous), and in the discrete case the problem simply does not arise.

Under an extra technical condition, we have a simple characterization of
Markov sequences:

Theorem 1. Suppose that ∀t > 0, ∀k ∈ N, the function

Ht,k(x) =

√
Kt(x, x)
xk

∫

|y|>x
yk

√
Kt(y, y)µ(dy) (4)

converges to 0 almost everywhere when x goes to infinity. Then, for every
Markov sequence (ck) associated to (Pk), there exists a probability measure ν
on [−1, 1] such that

∀k ∈ N, ck =
∫

xk ν(dx).

Moreover, if the measure is carried by R+, then the measure ν may be chosen
with support [0, 1].

Proof. For a Markov sequence (ck), we define for every t > 0 the Markov
kernel

Kc
t (x, y) =

∑

k

exp(−λkt)ckPk(x)Pk(y). (5)

This is again a positive kernel, which is square integrable with respect to
the product measure. (Recall that the sequence (ck) lies in [−1, 1].) Since the
kernel Kc

t corresponds to a positive operator, for almost every x the measure
Kc
t (x, y)µ(dy) is a positive measure.

On the other hand, we know that

Kc
t (x, y)2 � Kc

2t(x, x)Kc
2t(y, y) � K2t(x, x)K2t(y, y),
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almost everywhere in the product.
Therefore, there exists a sequence (xn) going to infinity such that the

measures νn,t(dy) = Kc
t (xn, y)µ(dy) are probability measures, such that the

previous inequality holds for any (xn) almost everywhere in y, and such that
the sequence (Ht,k(xn)) converges to 0, where Ht,k is the function defined
in 4. (This is the only place where we use the fact that the support of µ is not
compact.)

We consider then the measures µn,t on [−1, 1] obtained in the following
way: we restrict νn,t on [−xn, xn], and take the image under the map x �→
x/xn.

Then, we shall show that the sequence (νn,t) converges to a measure ν
whose moments are (cn). The limit is taken first in n→∞, then in t→ 0.

Since the measures νn,t are supported by the compact interval [−1, 1], to
prove this convergence it suffices to show that the moments of the measures
νn,t converge, and that the total mass converges to 1.

In fact, we shall prove that, for every k ∈ N,

lim
n,t

∫
xk νn,t(dx) = ck,

and this will complete the proof, since the set of probability measures on
[−1, 1] is compact for the weak convergence.

First we observe that, k being fixed, Pk(xxn)/(dkxkn) converges uniformly
on [−1, 1] to xk when n goes to infinity, and therefore it suffices to check that

lim
n,t

1
dkxkn

∫
Pk(xxn) νn,t(dx) = ck.

Then, by definition of νn,t, we write the last integral as

1
dkxkn

∫

|y|�xn

Pk(y)Kc
t (xn, y)µ(dy)

=
1

dkxkn

(∫

R

Pk(y)Kc
t (xn, y)µ(dy)−

∫

|y|�cn

Pk(y)Kc
t (xn, y)µ(dy)

)
.

The first integral is nothing else than ck exp(−λkt)Pk(xn)/(dkxkn), whose limit
in n is ck exp(−λkt), and we then take the limit in t→ 0.

It remains to show that the second integral goes to 0. But then we use
Kc
t (x, y)2 � K2t(x, x)K2t(y, y) (remember that the sequence (c2)k is bounded

by 1), and |Pk(x)| � Ck|xk|, on |y| � xn, for n large enough. The result then
follows from the assumption. 
�

Applying Theorem 1 requires some knowledge about the functions Kt(x, x),
which is not always easy to obtain. We shall derive below another version,
which avoids this difficulty.
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Theorem 2. Assume that the measure µ has a density ρ with respect to the
Lebesgue measure, and that, for any k, there exists a constant Ck such that,
for x large enough, ∫

|y|�x

|y|k
xk

µ(dx) � Ckρ(x).

Then, the same conclusion holds.

Proof. In the previous theorem, we considered the measure µn,t = Kc
t (xn, dy),

which we truncated on [−xn, xn] and then concentrate on [−1, 1] by dilation.
Here, we shall apply the same procedure to the measure

µn,t(dy) =
∫

x∈[n−1,n]

Kc
t (x, dy) dx,

which we truncate on [−n, n] and carry onto [−1, 1].
The same proof works without any change, and we are led to prove that,

for any t and any k,
∫

|y|�n

|y|k
nk

µn,t(dy) −→ 0, (n→∞).

We majorize again

|Kc
t (x, y)| �

√
K2t(x, x)

√
K2t(y, y),

and the latter expression is bounded by
∫

[n−1,n]

√
K2t(x, x)

(∫

|y|�|x|

|y|k
nk

√
K2t(y, y)µ(dy)

)
dx.

We know that ∫
K2t(y, y)µ(dy) <∞.

We may use Schwarz’ inequality and the hypothesis (with k replaced by 2k),
and we are led to prove that

∫

[n−1,n]

√
K2t(x, x)ρ(x) dx −→ 0 (n→∞).

But we then use Schwarz’s inequality again and we know that
∫

K2t(x, x)ρ(x) dx <∞,

and therefore that
∫

[n−1,n]

K2t(x, x)ρ(x) dx −→ 0 (n→∞),

which shows that the previous sequence goes to 0. 
�
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From the representation theorem for Markov sequences, it is easy to deduce
the representation theorem for Markov generators sequences.

Proposition 2. Under the conditions of theorems 1 or 2, if (λk) is a Markov
generator sequence associated with (Pn), there exist two non negative con-
stants θ and c and a probability measure ν on (−1, 1) such that

λk = θk + c

∫ 1

−1

1− sk

1− s
ν(ds).

Proof. This Lévy–Khintchine representation theorem is straightforward once
we have the representation theorem for the Markov sequences. Assume that
(λk) is a Markov generator sequence. Then, for any t > 0, there exists a
probability measure µt on [−1, 1] such that

exp(−λkt) =
∫

xkµt(dx).

If we define the convolution of two measures on [−1, 1] by

µ ∗ ν(f) =
∫

f(xy)µ(dx) ν(dy),

we see that (µt)t�0 is a convolution semigroup for this structure.
Therefore, the result comes from classical results of harmonic analysis on

groups (see [2], for example).
Nevertheless, for the sake of completeness and since the arguments are

really easy to obtain in this case, we cannot resist to briefly sketch the proof.
Let (µλt )t�0 be the convolution semigroup associated to the Markov gener-

ator sequence λ. First, we remark that the set L of Markov generator sequences
is a convex cone (with µλat ∗ µλ

′
bt associated with the sequence aλ + bλ′). We

endow it with the topology of pointwise convergence, which corresponds to
the narrow convergence of the associated measures µλt . Remark that each λ
in L satisfies λ0 = 0. Then we observe that, by Jensen’s inequality,

λ(2k) � 2kλ(1),

and also that
∫ 1

−1

(x2k − x2k+1)µt(dx) �
∫

(1− x)µt(dx),

from which we get, at t = 0, that

λ(2k + 1) � λ(2k) + λ(1) � (2k + 1)λ(1).

Therefore, for any k, λ(k) � kλ(1), and the cone L has compact basis.
Observe also that, if there is an even h for which λ(h) = 0, then the

measure µλt is supported by {−1, 1}, and therefore all even h satisfy λ(h) = 0
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and λ(2k+1) = λ(1). The representation is given with any probability measure
ν = αδ1 + (1− α)δ−1, λ(1) = c(1− α) and θ = cα.

So we may suppose that all even λ(h) are non zero.
In this case, the trick is to show that, if h is even, then the sequences (in k)

λ1(h, k) = λ(k + h) − λ(h) and λ2(h, k) = λ(k) + λ(h) − λ(k + h) are again
in L.

The sequence λ1 is associated to the semigroup (etλ(h)xhµλt (dx))t�0. For
the sequence λ2, we observe that the sequence

νn(dx) =
1− xh

1− exp
(
−λ(h)/n

) µλ1/n(dx)

has a weak limit (considering its moments) which is associated to the Markov
sequence λ2(h, k)/λ(h).

Also, if λ is a Markov sequence, associated to some measure µ, then 1−λ
is in L, associated to

µt = e−t
∑

k

tk

k!
µ∗k.

If we apply this to the Markov sequence just obtained and multiply by
λ(h) we get λ2.

Now, if λ is an extremal element of the cone L, then λ2 and λ1 are pro-
portional to λ, we get

λ(k + h) = λ(h) + c(h)λ(k),

for all even h and any k. Applying that with h + h′, and comparing, we get
c(h)c(h′) = c(h + h′), and therefore c(h) = xh, for some x ∈ (0, 1].

The case x = 1 leads us to λ(2p) = pλ(2) and λ(2p + 1) = pλ(2) + λ(1),
and the case x �= 1 gives

λ(k) =
λ(2)

1− x2
(1− xk), (k even),

and
λ(k) =

λ(2)
1− x2

(1− xk−1) + λ(1)xk−1, (k odd).

Therefore, the extremal elements of L are included in the following function
set: 





λ : 2p �−→ 2pθ
2p + 1 �−→ (2p + 1)θ + γ

λ : 2p �−→ α(1 − x2p)
2p + 1 �−→ α(1 − x2p) + βx2p

with θ = λ(2)/2, γ = λ(1)− λ(2)/2, α = λ(2)/(1− x2) et β = λ(1).
The first family corresponds to
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λ(k) = θk +
∫ 1

−1

1− xk

1− x
(γδ−1)(dx).

For the second, it may be written as a combination of

λ(k) =
1− xk

1− x
and λ′(k) =

1− (−x)k

1 + x
,

which corresponds to the measures ν = δx and ν = δ−x respectively.
Last, we use the Choquet representation theorem to get the general form

of the representation. 
�

4 The Hermite Polynomials Case

We shall now illustrate our main theorems on some examples. Let us begin
with the family of Hermite polynomials.

They are the orthonormal family associated with the Gaussian measure

γ(dx) =
1√
2π

e−x
2/2 dx.

The Hermite polynomials (Hk(x))k∈N are defined by their generating se-
ries:

∀t ∈ R, ∀x ∈ R,
∑

k∈N

tk√
k !

Hk(x) = etx−t
2/2.

From their generating series, it is not hard to deduce the following property:
if L(f)(x) = f ′′(x)− xf ′(x), then

L(Hn) = −nHn.

But the operator L is the generator of a diffusion semigroup, namely the
Ornstein–Uhlenbeck semigroup, which may be defined in the following way:

Pt(f)(x) =
∫

f
(

e−tx +
√

1− e−2ty
)
γ(dy).

Once again, starting from the generating series, it is easy to check that

Pt(Hn) = exp(−nt)Hn.

Therefore, the sequence λn = −n is a Markov generator sequence for the
family (Hn), and this semigroup (Pt)t�0 will be used for the semigroup (Kt)t�0

described in theorem 1.
We get from the previous section the following result, due to [10].
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Proposition 3. The sequence of real numbers (ck) is Markov with respect to
(Hn) if and only if there exists a probability measure µ on [−1, 1] such that

ck =
∫ 1

−1

xk µ(dx).

Proof. We first check that the conditions of the theorem apply.
From the definition of Pt, we can see that its kernel

pt(x, y) =
∑

k

exp(−kt)Hk(x)Hk(y)

may be written as

pt(x, y) =
(
2π(1− ρ2)

)−1/2 e−
(y−xρ)2

2(1−ρ2)
+ y2

2 ,

where ρ = e−t.
From this, by a change of variables, we see that

∫

|y|�x

yk

xk

√
pt(y, y) γ(dy) � c(k, t) e−

x2
2

1
1+ρ ,

while √
pt(x, x) = c′(t) e

x2
2

ρ
1+ρ .

Therefore, the product of these two quantities converges to 0 when x goes
to ∞.

It remains to show that all the moments of measures are effectively Markov
sequences, and, by convexity, it is enough to show that, for any x ∈ [−1, 1],
the sequence (xk) is a Markov sequence.

If 0 < x < 1, then the sequence (exp(−kt)) answers the question (and
corresponds to the Markov generator sequence described before).

The case x = 0 corresponds to the projection onto the constant func-
tions (the integration with respect to γ, which is always a Markov sequence
whatever the model).

The case x = 1 corresponds to the identity operator (same remark).
We have to show that the same remains true for −x, where x ∈ [0, 1].

But the product of two Markov sequences is always a Markov sequence, and
therefore we only have to show that the sequence ((−1)k) is Markov.

This corresponds to the operator K(f)(x) = f(−x). In fact, for the Her-
mite polynomials (Hn), we have Hn(−x) = (−1)nHn(x), a property which
reflects the symmetry around 0 of the Gaussian measure. 
�

It is interesting to notice that the convolution structure associated to the
Markov sequence for Hermite polynomials is inherited from the hypergroup
structure for the ultraspherical polynomials.
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Recall that the ultraspherical measure (which corresponds to the case α =
β of Jacobi polynomials) is

γn(dx) = cn
(
1− x2

)n/2−1
1(−1,1) dx,

which for n ∈ N corresponds to the projection of the sphere onto a dia-
meter. If we scale this measure by

√
n and let n → ∞, it is quite clear that

this sequence of measures converges to the Gaussian measure (the celebrated
Poincaré limit). Now, the whole structure of orthogonal polynomials converges
in the same way.

If we look closely at the hypergroup convolution described in section 2,
call it ∗n, a simple exercise shows that

ν ∗n µ(f) −→
∫

f(xy)µ(dx) ν(dy) (n→∞).

As we just saw, there are in this case two extremal Markov generators.
The Markov generator associated to the Ornstein–Uhlenbeck process, and the
generator associated to the “sign” process, corresponding to a measure ν which
is a Dirac mass at −1. To be more precise, we shall notice that we may always
construct any Markov semigroup by subordination to the two corresponding
semigroups.

To clarify the ideas, and to avoid complications, we just consider the case
where in the Lévy–Khintchine representation 2 the measure dν̂ = c dν/(1−x)
on [−1, 1] is a probability measure, and where θ = 0. Then, we can easily
construct a Markov process with generator sequence given by the associated
family of λk with the help of a Ornstein–Uhlenbeck process and an indepen-
dent Markov process on [−1, 1] with generator ν. To do that, we just consider
a sequence of independent random variables (Yn) on [−1, 1] with common
law ν̂, and an independent Poisson process (Nt)t�0 with intensity 1 on the
integers. Then, we set

Mt =
Nt∏

0

Yi.

This defines a Markov process (Mt)t�0 on [−1, 1] with semigroup (µt)t�0.
Then, we set Tt = − log(|Mt|), and εt = sign(Mt), where sign(x) = 1x�0 −
1x<0.

Let (Xt)t�0 be an independent Ornstein–Uhlenbeck process. Then the
process (Yt)t�0 defined by Yt = εtXTt is a Markov process, and its generator
is given by the Markov generator sequence (λk) associated to ν. To see this,
it is enough to show that, for any k,

Ex[Hk(εtXTt)] = e−λktHk(x).

We distinguish two cases.
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The integer k is even: Hk(x) is then an even polynomial, and Hk(εtx) =
Hk(x). Let ρt be the law of Tt. Using independence, we have

Ex[Hk(εtXTt)] = Ex[Hk(XTt)]

=
∫

R

Ex[Hk(Xs)] ρt(ds)

=
∫

R

e−ks ρt(ds)Hk(x)

= E
[
|Mt|k

]
Hk(x)

= E
[
Mk
t

]
Hk(x)

= e−λk(t)Hk(x).

The integer k is odd: Hk(x) is then an odd polynomial, and Hk(εtx) =
εtHk(x). Then, ρt(dε, ds) being the joint law of (εt, Tt)

Ex[Hk(εtXTt)] = Ex[εtHk(XTt)]

=
∫

R×{−1,1}
εEx[Hk(Xs)] ρt(dε, ds),

= E
[
εt|Mt|k

]
Hk(x)

= E
[
Mk
t

]
Hk(x)

= e−λk(t)Hk(x).

Of course, when the total mass of the measure ν is finite and not 1, we may
as well use a Poisson process with intensity λ �= 1 to represent the semigroup.

When θ �= 0, we simply replace the process (XTt)t�0 by (Xθt+Tt)t�0 to
get the same representation.

Thus, we always get a Bochner representation for the Markov semigroups
associated to (Hn) of the form

Kt(f) =
∫

R+×{−1,1}
Ps

(
f(εx)

)
ρt(dε, ds),

with (ρt)t�0 a convolution semigroup on R+ × {−1, 1}.
Back to the Poincaré limit, it would be nice if we could interpret those

processes as limits of jump processes on spheres. To make things simpler, we
only consider the case where θ = 0, c = 1, ν(ds) = δl(ds).

Let (Xt)t�0 be a jump process on Sn−1(1), whose jump times have an
exponential distribution law of parameter 1, and whose each jump amplitude
has a distribution law, which is invariant under any rotation around the point
from where the jump began, that is, we can write: Xt = YNt , where (Nt)t�0 is
a Poisson process of parameter 1, and (Yn)n∈N an homogeneous Markov chain,
whose transition kernel is P{Yn ∈ dy |Yn−1 = x} = f(x · y)σ(dy), where x
and y are some points of Sn−1(1), and where f is a function on Sn−1(1).
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Assume that f is a function of L2(Sn−1(1),m), it then satisfies the following
expression, in the ultraspherical polynomial:

f(x · y) =
∑

k∈N

fkP
n
k (x · y).

Let (Pt)t�0 be the semigroup associated to the process (Xt)t�0, and let g
be an element of L2(Sn−1(1), σ):

Ptg(x) = g(x) e−t +
(
1− e−t

) ∫

Sn−1(1)

f(x · y)g(y)σ(dy) + o(t2),

hence if we denote by L the associated infinitesimal generator, and if we
assume that g lies in the domain of L:

Lg(x) = −g(x) +
∫

Sn−1(1)

g(y)f(x · y)σ(dy).

Let us focus on the action of the operator L on the radial functions. Let g be
a radial function of L2(Sn−1(1),m), it then satisfies the following expression:

g(x) =
∑

k∈N

gkP
n
k (x · e).

Then we have:

Lg(x) =
∫

Sn−1(1)

∑

k∈N

fkgkP
n
k (x · y)Pnk (y · e)σ(dy)− g(x)

=
∑

k∈N

fkgk

∫

Sn−1(1)

Pnk (x · y)Pnk (y · e)σ(dy)− g(x).

Now, we already observed that
∫

Pnk (x.y)Pnk (z · y)σ(dy) =
Pnk (x · z)
Pnk (1)

.

Then, the Markov generator sequence associated to L is (fk/Pnk (1) − 1).
When the measure ν is δl, we simply get (Pnk (l)/Pnk (1)− 1).

Now, some analysis on the polynomials (Pnk ) shows that

lim
n→+∞

Pnk (l)
Pnk (1)

= lk.

It is easy to understand if we recall that

Pnk (l) ∼ Hk(l
√
n),
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and on the other hand that

lim
n→+∞

Hk(l
√
n)

Hk(
√
n)

= lk.

So that we deduce the following

λk = lim
n→+∞

λnk = 1− lk.

The Ornstein–Uhlenbeck process can be thought of as a limit, when l → 1,
of such limits of jump processes on the sphere.

5 The Laguerre Polynomials Case

The Laguerre polynomials are the family of orthogonal polynomials related
to the measure on R+

µα(dx) = Kd e−xxα dx (α > −1).

When α = d/2 − 1, with d ∈ N, this measure is obtained from the Gaussian
measure in R

d by taking its image under x �→ |x|2/2. In this case, if n is
even and if Hn is the relevant Hermite polynomial, then

∑d
1 Hn(xi) is indeed

a polynomial in |x|2/2 of degree n/2, and this is exactly (up to a constant)
the Laguerre polynomial of degree n/2. This explains the strong connections
between Laguerre and Hermite polynomials.

We have the generating function

F (t, x) = (1 − t)−a−1e−xt/(1−t) =
∑

k

tkck,αLk(x),

for the sequence of orthonormal polynomials (Ln) associated to this measure.
(The values of c(n, α) may be computed by taking the integral of F (t, x)F (s, x)
and identifying the series.) From this generating series, we deduce that, if
L(f)(x) = xf ′′(x) + (α − x)f ′(x), then

LPk = −kPk,

and therefore, since L is the generator of a diffusion semigroup on R+, the
sequence (exp(−kt)) is a Markov sequence.

In this situation, it is not completely straightforward to get an explicit
upperbound on the kernel Kt(x, x). But a simple computation gives

∫

y�x

yk

xk
µα(dx) � Cke−xxα.

Therefore, the second criterion 2 applies and we get
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Theorem 3. A sequence (ck) is Markov with respect to the family of Laguerre
polynomials if and only if there exists a probability measure ν on [0, 1] such
that

ck =
∫

xk ν(dx).

A sequence (λk) is a Markov generator sequence with respect to the La-
guerre polynomials if and only if there exists a probability measure ν on [0, 1),
and two non negative reals θ and c such that

λk = θk + c

∫ 1

0

1− sk

1− s
ν(ds).

Proof. The second assertion is a direct consequence of the first one. For the
first one, the only thing to prove is that any probability measure ν provides a
Markov sequence, and by convexity, that for any 0 ∈ [0, 1], (xk) is a Markov
sequence. We already know the result for x = 0 and x = 1, and we also know
that, for any t > 0, the sequence (e−λkt) is Markov. The proof is completed.


�

Once again, in this case, the Lévy–Khintchine formula gives a Bochner
representation of any semigroup with respect to the diffusion semigroup asso-
ciated to the generator

L(f)(x) = xf ′′(x) + (α− x)f ′(x).

The situation is even simpler than the Hermite case, since we do not need
to use the “sign” semigroup.

6 Discrete Measures

In this section we briefly investigate some examples of measures on the set N

of integers.
The first remark is that, provided there exists a Markov generator sequence

(λk) such that
∑

e−λkt <∞ for any t > 0, the criterion of theorem 1 is always
satisfied for measures with exponential decay. Indeed, we have

Proposition 4. Assume that (λk) is a Markov generator sequence such that

t > 0 =⇒
∑

k

e−λkt <∞,

and let Kt(x, y) be the associated kernel. If

lim sup
n→∞

µ(n + 1)
µ(n)

< 1,

then, for any k ∈ N, for any t > 0,
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lim
n→∞

√
Kt(n, n)
nk

∑

p>n

pk
√
Kt(p, p)µ(p) = 0.

Proof. We just have to follow the lines of the proof of theorem 2.
We write

∑

p>n

pk
√
Kt(p, p)µ(p) �

(
∑

p�0

Kt(p, p)µ(p)

)1/2(∑

p>n

p2kµ(p)

)1/2

.

For n large enough, the hypothesis shows that,

p � n =⇒ µ(p) � cp−nµ(n),

for some c < 1.
Therefore, ∑

p>n

p2kµ(p) � Ckn
2kµ(n),

and it remains to observe that Kt(n, n)µ(n) goes to 0 when n goes to infinity,
which comes from the summability of the series. 
�

We may then apply this result to different classical families.

6.1 The Charlier Polynomials

They are the polynomials associated to the Poisson measure

µa(n) = exp(−a)
an

n!
(a > 0).

The generating series is

e−t
(

1 +
t

a

)x
=

∑(
t√
a

)n
Pn(x)√

n!
,

(see [12]), from which it is not hard to deduce that, if

La(f)(k) = f(k + 1) +
k

a
f(k − 1)−

(
k

a
+ 1

)
f(k),

then
LaPn = −n

a
Pn.

Therefore, the Charlier polynomials are the eigenvectors of the finite difference
operator La, which is the generator of a Markov semigroup Kt. The sequence
(λn) = (n/a) is therefore a Markov generator sequence, and the result applies.
We get
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Proposition 5. A sequence (ck) is Markov for the Charlier polynomials if
and only if there exists a probability measure µ on [0, 1] such that

ck =
∫

xk µ(dx).

A sequence (λk) is a Markov generator sequence for the Charlier polynomials if
and only if there exists a probability measure ν on [0, 1) and two non negative
real parameters θ and c such that

λk = θk + c

∫
1− sk

1− s
ν(ds).

Every Markov semigroup is Bochner subordinated to the Markov semigroup
with generator La.

6.2 The Meixner Polynomials

They are the polynomials associated with the measure

µ(n) =
Γ (b + n)
Γ (b)

cn

Γ (n + 1)
, (b > 0, 0 < c < 1).

Notice that for b = 1 we get the geometric distribution with parameter c.
They satisfy

LPn = −n(1− c)Pn,

where the finite difference operator L may be defined as

L(f)(n) = n∆(f)(n) +
(
bc− (1− c)n

)
D(f)(n),

with D(f)(n) = f(n+1)−f(n) and ∆(f)(n) = f(n+1)+f(n−1)−2f(n). (A
nice account of the properties of classical orthogonal polynomials associated
with discrete measures may be found in [1].)

Once again, the sequence (λk = (1− c)k) is a Markov generator sequence
and we get the same result as in proposition 5, replacing everywhere Charlier
polynomials by Meixner polynomials.
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