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Summary. Let (Y (t), ¢ > 0) be the fragmentation process introduced by Aldous
and Pitman that can be obtained by time-reversing the standard additive coalescent.
Let (o1/2(t), t = 0) be the stable subordinator of index 1/2. Aldous and Pitman
showed that the distribution of the sizes of the fragments of Y (¢) is the same as the
conditional distribution of the jump sizes of o1, up to time ¢, given oy5(t) = 1.
We show that this is a special property of the stable subordinator of index 1/2, in
the sense that if @ # 1/2 and o, is the stable subordinator of index «, then there
exists no self-similar fragmentation for which the distribution of the sizes of the
fragments at time ¢ equals the conditional distribution of the jump sizes of o, up to
time ¢, given o (t) = 1. We also show that a property relating the distribution of a
size-biased pick from Y'(t) to the distribution of oy 5(t) is similarly particular to the
a = 1/2 case. However, we show that for each o € (0, 1), there is a family of self-
similar fragmentations whose behavior as ¢ | 0 is related to the stable subordinator
of index « in the same way that the behavior of Y(¢) as ¢ | 0 is related to the stable
subordinator of index 1/2.

Key words: Self-similar fragmentation, stable subordinator, Poisson—Kingman dis-
tribution.

1 Introduction

Fragmentation processes describe an object that breaks into smaller pieces
in a random way as time moves forward. Ranked fragmentations are Markov
processes taking their values in the set A = {(2;)°, : @1 = @2 > -+ >
0, >0y < 1} If (X(¢), t > 0) is a ranked fragmentation, we can regard
the terms in the sequence X (¢) as being the masses of the components into
which the object has fragmented after time ¢, with the masses being ranked in
decreasing order. Alternatively, one can study partition-valued fragmentations,
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which take their values in the set of partitions of N = {1,2,...}. If (II(¢), t >
0) is a partition-valued fragmentation and s < ¢, then the partition I1(¢) is a
refinement of the partition I7(s).

In recent years, a fragmentation introduced in [4] by Aldous and Pitman,
which we call the Aldous—Pitman fragmentation, has been studied extensively.
Aldous and Pitman first constructed this fragmentation process from the
Brownian continuum random tree (CRT) of Aldous (see [1, 2, 3]). The CRT is
equipped with a finite “mass measure” concentrated on the leaves of the tree
and a o-finite “length measure” on the skeleton of the tree. When the CRT
is cut at various points along the skeleton, the tree is split into components
whose masses sum to one. Aldous and Pitman defined a ranked fragmentation
process (Y (t), t > 0) such that Y (¢) consists of the ranked sequence of masses
of tree components after the CRT has been subjected to a Poisson process of
cuts at rate ¢ per unit length.

One can also obtain a partition-valued fragmentation (I1(t), ¢t > 0) by
picking leaves U, Us, ... independently from the mass measure of the CRT,
and then declaring ¢ and j to be in the same block of I1(¢) if and only if the
leaves U; and U; are in the same tree component at time ¢. To see how this
process is related to (Y(¢), t > 0), we first give a definition. If B C N and

1 N
i Z; Lijen)
j:

exists, then this limit is called the asymptotic frequency of B. If  is a partition
of N, let A(7) be the sequence consisting of the asymptotic frequencies of the
blocks of 7 ranked in decreasing order (whenever these frequencies exist).
Then (A(II(t)), t = 0) =4 (Y(t), t = 0).

The Aldous—Pitman fragmentation has arisen in a variety of contexts.
Aldous and Pitman showed in [4] that if X (¢) = Y(e™?), then the process
(X(t),—00 <t < 00) is a version of the standard additive coalescent. Loosely
speaking, the standard additive coalescent is a coalescent process with the
property that fragments of masses z and y are merging together at the rate
x+y. See [20], [5], and [10] for more results related to the additive coalescent.
Chassaing and Louchard [18] related the process (Y (¢), ¢ > 0) to parking func-
tions in combinatorics. Also, Bertoin [8, 10] showed that (Y'(¢), ¢ > 0) can be
constructed from a Brownian motion with drift and that the so-called eternal
versions of the additive coalescent could be constructed in a similar way from
excursions of processes with exchangeable increments. Miermont [25] used this
method to generalize [8] by studying a larger class of fragmentation processes,
related to the additive coalescent, which can be obtained by adding drift to
a general Lévy process with no positive jumps, implying several explicit laws
for certain versions of the additive coalescent. The use of the ballot theorem
therein was motivated by a similar approach of Schweinsberg [29] to analyze
some functionals of the Brownian excursion.
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The starting point for the present paper is the following theorem due to
Aldous and Pitman, which shows three ways in which the Aldous—Pitman
fragmentation is related to the stable subordinator of index 1/2.

Theorem 1. Let (Y (t),t > 0) be the Aldous—Pitman fragmentation, and
write the components of the fragmentation as Y (t) = (Y1(¢), Ya(t),...). Also,
let (I1(t), t > 0) be a partition-valued fragmentation with the property that
(A(I1(t)), t = 0) =4 (Y(t),t = 0). Let Y*(t) be the asymptotic frequency of
the block of II(t) containing the integer 1. Let (c1/2(t), t = 0) be a stable
subordinator of index 1/2. Then, the following hold:

1. For every t > 0, we have Y (t) =4 (J1,J2,...|01/2(t) = 1), where
J1,J2,. .. are the jump sizes of o1/5 up to time t, ranked in decreasing order.

2. We have

(Y*(t),t>0) =4 (mt > 0).

3. Ast — 0, we have t=2(1 =Yy (t), Ya(t), Y3(t),...) —q (01/2(1), J1, 2, ... ).

Part 1 of the theorem can easily be obtained from Theorem 4 of [4] and
scaling properties of stable subordinators. Part 2 is Theorem 6 of [4]. Part 3
is Corollary 13 of [4].

It is natural to ask whether there are other fragmentation processes re-
lated to the stable subordinator of index a € (0,1) in the same ways that
the Aldous—Pitman fragmentation is related to the stable subordinator of in-
dex 1/2. In [11], Bertoin constructed a family of fragmentation processes,
called self-similar fragmentations, which satisfy a scaling property. Because
the Aldous—Pitman fragmentation is self-similar, one might expect the fam-
ily of self-similar fragmentations to include fragmentations with properties
that generalize properties of the Aldous—Pitman fragmentation. The purpose
of this paper is to consider separately the three parts of Theorem 1 and to
determine whether there are other self-similar fragmentations for which sim-
ilar results hold, with the stable subordinator of index 1/2 replaced by the
stable subordinator of index . Our conclusion, made precise by Theorem 2
and Propositions 1 and 2 below, is that only part 3 relating to asymptotics as
t — 0 can be easily generalized. Parts 1 and 2 of the theorem describe special
properties of the a = 1/2 case which do not extend, at least not in the most
natural way, to other o € (0,1).

Before stating these results, we will define self-similar fragmentations and
review some of their properties. For 0 < I < 1, define Ay = {(2;)2, : 1 >
Ty = -0 = 0,7, x; < 1}. Note that A = Ay. We will denote points in
A by z = (21,%2,...). Suppose ¢(l) is a probability measure on A; for all
0<I<1landt>0.Foreach L = (l1,ls,...) € A, let k(L) denote the distri-
bution of the decreasing rearrangement of the terms of independent sequences
Ly, Lo, ..., where L; has the distribution x(l;) for all i. For each t > 0, denote
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by k; the family of distributions (k,(L), L € A), which we call the fragmen-
tation kernel generated by (x:(1),0 <1< 1). A time-homogeneous, A-valued
Markov process whose transition semigroup is given by fragmentation kernels
is called a fragmentation process or ranked fragmentation. This definition is
essentially taken from [8], although we allow the sum of the masses of the
fragments to decrease over time as in [6].

For 0 <1< 1,let g : A — A; be the map defined by g;(z1,22,...) =
(lz1,lz9,...). A ranked fragmentation is said to be a homogeneous fragmen-
tation if, for all 0 < I < 1 and ¢ > 0, the probability measure r¢(l) is the
image under g; of the probability measure k;(1). Notice that the term “ho-
mogeneous” does not refer to the assumed homogeneous Markov property of
the semigroup. We call the fragmentation process a self-similar fragmentation
of index B € Rif, for all 0 <1 < 1 and ¢ > 0, k(I) is the image under g; of
#r(1), where r = t1°. Note that a self-similar fragmentation of index 0 is a
homogeneous fragmentation.

Bertoin formulated definitions of homogeneity and self-similarity for parti-
tion-valued fragmentations that are analogous to the definitions given above
for ranked fragmentations. In [9], Bertoin showed that all homogeneous
partition-valued fragmentations can be described in terms of an erosion rate
¢ > 0 and a measure v on A\ (1,0,0,...), called the Lévy measure (or dislo-
cation measure), which satisfies

/ (1—mz)v(de) < . (1)
A

In [11], Bertoin showed that all self-similar fragmentations can be obtained
from homogeneous fragmentations by a random time change which is de-
termined by 3. Consequently, all self-similar partition-valued fragmentation
are fully described by their characteristics (3, ¢,v). For each triple (8, ¢,v),
Bertoin constructs a self-similar fragmentation with these characteristics from
a Poisson process. We will present this construction in the next section. The
erosion rate ¢ describes the rate at which singletons break away from larger
blocks of the partition, and the Lévy measure governs the rates of other frag-
mentation events. If v({z : 1 + 2 < 1}) = 0, then no block will break into
more than two blocks at any given time. We then call the process a binary
fragmentation.

If (II(t), t > 0) is a self-similar partition-valued fragmentation, then I7(t)
is an exchangeable random partition for all ¢. It follows from results of King-
man [23] that almost surely each block of IT(¢) has an asymptotic frequency.
By Theorem 3 of [9], we have the stronger result that if (II(¢), ¢ > 0) is ho-
mogeneous, then almost surely all blocks of IT(t) have asymptotic frequencies
for all . We can then see from the construction described in section 3 of [11]
(and recalled in Sect. 2 below) that there exists a version (II(t), t > 0) of any
self-similar fragmentation process such that almost surely all blocks of I7(t)
have asymptotic frequencies for all ¢. Furthermore, if (I1(t), t > 0) denotes
this version of a self-similar partition-valued fragmentation (which we will al-
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ways suppose in the sequel when considering self-similar fragmentations), then
(A(I1(t)), t > 0) is a self-similar ranked fragmentation with the same index of
self-similarity. Berestycki [6] showed conversely that if (X (¢), t > 0) is a self-
similar ranked fragmentation, then there exists a self-similar partition-valued
fragmentation (II(t), ¢ > 0) such that (A(II(t)),t > 0) = (X(¢),t > 0).
Consequently, self-similar ranked fragmentations are also in one-to-one corres-
pondence with triples (3, ¢,v), where 8 € R, ¢ > 0, and v is a measure on
A\(1,0,0,...) satisfying (1). Thus, we may work either with partition-valued
fragmentations or ranked fragmentations, and both will be useful later in the
paper.

Several examples of self-similar fragmentations have been studied. In [16]
and [17], Brennan and Durrett studied a family of self-similar fragmentations.
In the same context, see also Filippov [21]. Bertoin [11] considered an example
that is related to Brownian excursions. Bertoin also observed in [11] that the
Aldous-Pitman fragmentation is the binary self-similar fragmentation with
characteristics (1/2, 0, v), where the restriction of v to the first coordinate has
density h(z) = (2m)~1/2273/2(1 — 2)=3/21} )5 1) (2).

The following theorem, which is our main result, is related to part 1 of
Theorem 1 about one-dimensional distributions. Here, and throughout the rest
of the paper, o, = (04(t), t > 0) denotes a stable subordinator of index a.

Theorem 2. Let (X (t),t > 0) be a self-similar fragmentation, and let « €
(0,1). Let Jy(t) = J2(t) > ... be the ranked jump sizes of o, between times 0
and t. If

X(t) = (J1(t), J2(t), - [ 0alt) = 1) (2)

forall t, then « = 1/2 and (X (t), t = 0) is the Aldous—Pitman fragmentation.

The distributions on the right-hand side of (2) are part of a larger family of
distributions studied in [28, 26]. Suppose J; > Jo > ... is the ranked sequence
of points from a Poisson process with intensity measure © on (0, c0), where ©
has density 6(z) and integrates 1 A z. Let T = >">° | J;. Then (J;/T)5, is a
random point in A. Its distribution is called the Poisson-Kingman distribution
with Lévy density 6 and is denoted by PK(6). The conditional distribution of
(J;/T)2, given T = t is denoted by PK(6|t). Since 0,(t) =4 t'/“c,(1) by
scaling properties of stable subordinators, we have

(J1(t), Jo(t), -+ | oalt) = 1) =4 (£/*T1(1), /T (1), | oa(l) =t71/%). (3)

For « € (0,1), let 6, be the Lévy density given by 0, (z) = C, 7“1, where G,
is the constant defined later in (8). If J1(¢) > J2(t) > ... are the ranked jump
sizes of o, between times 0 and ¢, then the distribution of (Ji, Jo,...) has the
same distribution as the ranked sequence of points of a Poisson point process
with Lévy density t6,. Therefore (3) implies that the PK(¢0,, | 1) distribution
is the same as the PK(f, |t~1/®) distribution. Theorem 1 therefore shows
that if (Y'(¢), ¢ > 0) is the Aldous-Pitman fragmentation, then Y (¢) has the
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PK(6; /5 | t~2) distribution. Theorem 2 shows that there is no self-similar frag-
mentation (X (t), t > 0) such that the distribution of X () is PK(f, |t~/)
for all t. We have not, however, ruled out the possibility that a fragmenta-
tion which is not self-similar may have this property. In general, it remains
an open problem to characterize the Lévy densities 6 for which there exists
a fragmentation process (Z(t), t > 0) and a function f : (0,00) — (0,00)
such that Z(¢) has the PK(| f(t)) distribution for all ¢ > 0. However, we
note that Miermont, in [25], has studied fragmentation processes that are not
self-similar whose one-dimensional distributions are those of jump sizes for
conditioned subordinators with varying Lévy measure, and one can show that
a subclass of these fragmentations satisfy the asymptotics (4) below.

We now turn to a result for partition-valued fragmentations that pertains
to the distribution of the mass of the block containing 1, which we sometimes
call a “tagged fragment”. The distribution of the mass of this block at time ¢
is the same as the distribution of a size-biased pick from the sizes of the
fragments of the corresponding ranked fragmentation at time ¢, provided that
the sum of the sizes of the fragments at time ¢ is 1 almost surely.

Proposition 1. Let (II(t), t > 0) be a partition-valued binary self-similar
fragmentation. Let o € (0,1). Let A(t) be the asymptotic frequency of the
block of I1(t) containing the integer 1. If for some decreasing function g,

(A(®), £20) =a (9(7a(t), t 2 0),

then o = 1/2, g(z) = (1 + Kz)~! for some K > 0 and (A(I1(t)), t > 0) is
the Aldous—Pitman fragmentation, up to a multiplicative time constant.

Our next result gives, for each a € (0,1), a family of binary self-similar
fragmentations whose asymptotics as ¢ — 0 are related to the stable subordi-
nator of index a.

Proposition 2. Fiz « € (0,1), and let G, = o«/(I'(1 — a) cos(mae/2)). Let v
be a Lévy measure on A such that v({z : x1+x2 < 1}) = 0 and the restriction
vo of v to the second coordinate has density h, where

h(z) = Gy x_l_a5($)1[071/2] ()

for some positive function s satisfying lim,_gs(z) = 1. Let § > 0. Let
(X(t),t = 0) be the self-similar fragmentation with characteristics (3,0, v).
Write X (t) = (X1(t), Xa(t),...). Then, as t — 0, we have

til/a(l - Xl(t)aXQ(t)7X3(t)7 .. ) —d (O-a(l)a Jl(l)a JQ(l)’ cee )a (4)
where J1(1) > Jo(1) > ... are the jump sizes of o, up to time 1.

Another connection between the self-similar fragmentations in Proposi-
tion 2 and stable subordinators can be deduced from Bertoin’s work [13]
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regarding the small masses in self-similar fragmentations. Consider a binary
self-similar fragmentation (X(t), t > 0) with characteristics (3,0, v), where
3 > 0. Let 15 be the restriction of v to the second coordinate. Let

N(e,t) = max{i: X;(t) > ¢}

be the number of components in the fragmentation at time ¢ whose size is
greater than €. Let

M(e,t) =Y Xi()1{x,(t)<e}
1=1

be the total mass of the fragments at time ¢ of size less than €. Define ¢(e) =
va([e,1/2]) and f(e) = [; xv2(dz). It follows from Theorem 1 of [13] that ¢ is
regularly varying as € | 0 with index —« if and only if f is regularly varying
as ¢ | 0 with index 1 — a. It also follows from Theorem 1 of [13] that if these
regular variation conditions hold and 8 = 1 — «, then for all ¢ > 0,

lim N, ) = lim Mfe,?) =t

B oE@ W TE
with probability one. Therefore, a straightforward calculation shows that if
(X (t), t > 0) satisfies the conditions of Proposition 2 with § = 1 — «, then
N(g,t) ~ Cyate™ and M(e,t) ~ Cy(1 — o) Hel = with probability one
for all £ > 0, where ~ means that the ratio of the two sides tends to 1 as ¢ | 0.
For a stable subordinator of index o with Lévy measure n(dz) = C, 271~ du,
the expected number of jumps of size larger than ¢ before time ¢ is C, o~ 'te~2,
and the expected value of the sum of the sizes of the jumps of size less than ¢
before time t is C,(1 — a)~te!=*. Thus, N(e,t) behaves like the number
of jumps of a stable subordinator of index a that have size larger than e,
while M (e, t) behaves like the sum of the sizes of the small jumps of a stable
subordinator of index «.

The rest of this paper is organized as follows. In Sect. 2, we present the
Poisson process construction of self-similar fragmentations given by Bertoin
in [11]. In Sect. 3, we establish some relevant facts about stable subordinators.
In Sect. 4, we relate the small-time behavior of self-similar fragmentations to
the dislocation measure (Proposition 3) and prove Proposition 2. We review
some of Bertoin’s results on the large-time behavior of self-similar fragmenta-
tions in Sect. 5. Section 6 is devoted to the proof of Theorem 2, and Sect. 7
is devoted to the proof of Proposition 1.

2 A Poisson process construction of self-similar
fragmentations

In [11], Bertoin shows how to construct an arbitrary partition-valued self-
similar fragmentation with characteristics (8,¢,v) from a Poisson process.
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The conventions we are using here (for labelling partitions, and for taking
reduced partitions in property 3 below) are actually those used in [6], but
by exchangeability arguments explained therein they do indeed give the same
distributional object as the construction in [9, 11].

Let €, be the partition of N into the two blocks {n} and N\ {n}. Given
x = (x1,22,...) € A, let P* be the distribution of the random partition IT
obtained by first defining an i.i.d. sequence of random variables (Z;)52, such
that P(Z; = j) = xj and P(Z; = 0) = 1 - > x;, and then defining I7 to
be the partition with the property that ¢ and j are in the same block if and
only if Z; = Z; > 1. Let k be the measure on the set P of partitions of N
defined such that for all Borel subsets B of P, we have

k(B) = /A P*(B)v(dx) + ¢ 1, eny- (5)

i=1

Now, let # denote counting measure on N, and let ((I3, k¢), t > 0) be a Poisson
point process on P x N with intensity measure k ® #. We can use this Poisson
point process to construct a partition-valued self-similar fragmentation with
characteristics (8, ¢, v). The first step is to construct a homogeneous fragmen-
tation with characteristics (0, ¢, v). Let An consist of all partitions in P such
that not all the integers {1,..., N} are in the same block. Then x(Ax) < 0o
for all N, so (I3, k:) € Ay x {1,..., N} for only a discrete set of times, which
we can enumerate as t1 < to < .... Define (ITy(t), t > 0) to be the unique
process taking its values in the set of partitions of {1,..., N} that satisfies
the following three properties:

1. IIn(0) is the trivial partition of {1,..., N}.

2. IIy is constant on [t;—1,t;) for all i € N, where we set to = 0.

3. Integers i and j are in distinct blocks of ITy (¢;) if and only if either ¢ and j
are in distinct blocks of ITy (¢;—1), or i and j are in distinct blocks of I}, and
both ¢ and j are in a block of ITxn(t;—1) whose smallest integer is k.

If 7 is a random partition of N, let Rym be the random partition of
{1,..., N} such that if 1 < 4,5 < N, then ¢ and j are in the same block
of Ry if and only if they are in the same block of 7. The processes Il are
consistent as N varies, so there exists a unique process (II(¢), t > 0) such
that (RyII(t),t > 0) = (IIN(t),t > 0) for all N. Then (II(t),t > 0) is a
homogeneous fragmentation with characteristics (0, ¢, v), as discussed in [9].

In [11], Bertoin shows that any self-similar fragmentation can be con-
structed from a homogeneous fragmentation by a random time change. Let
I,,(t) be the asymptotic frequency of the block of IT(t) containing n. Define

(1) = inf{u >0 /Ou ()| dr > t}. (6)

Define the process (IT(?)(t), t > 0) such that i and j are in the same block of
IIP)(t) if and only if i and j are in the same block of H(Ti(ﬁ)(t)). It is shown
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n [11] that (IT®)(t), t > 0) is a self-similar partition-valued fragmentation
with characteristics (8, c,v). Therefore, (A(IT1P)(t)), t > 0) is a self-similar
ranked fragmentation with characteristics (3, ¢, v).

3 Stable subordinators

An R-valued stochastic process X = (X, t > 0) is called a subordinator
if it is nondecreasing and has stationary independent increments. If X is a

subordinator, then for all A > 0, we have

Ble ] = exp(—t <d>\ + /0 e n(dx))),

where d > 0 is the drift coefficient and 7 is the Lévy measure on (0, 00),
which must satisfy fooo(l Az)n(dz) < co. The process X is said to be a stable
subordinator of index o € (0,1) if d =0 and

n(dz) = oz " da (7)

for some constant (. Since changing the constant (; just changes time by
a constant factor, we lose no generality by considering just one value for C,.
We will therefore take

«@

'l — a)cos(ra/2)

Co = (8)
We will denote by (04(t), t > 0) a subordinator whose Lévy measure is given
by (7) and (8). The stable subordinator of index « satisfies the scaling property

(A4 (t), t = 0) =q (da(M), t = 0)  for every A > 0. (9)

It is shown, for example, in chapter 17 of [22] that the characteristic func-
tion of 4 (1) is given by

o(t) = exp(—\t|a (1 — 1 sgn(t) tan(%))).

(Proposition 11 in chapter 17 of [22] actually gives this result when C, =
2al(a) sin(ma/2) /7, but this is equivalent to (8) because of the duplication
formula I'(a)I'(1 — ) sin(ra/2) cos(ma/2) = w/2 for all @ € (0,1).) Let f;
be the density function of o, (t), and let f = f;. It follows from the formulas
given in [30] that if A = o!/20=%)(cos(ma/2))~ /=M [27(1 — a)]~/? and
B = (1—a)a®/0=% (cos(ma/2))" /1) then

f(x) ~ Ag~17/(20-a) exp(—B;lfo“/(lfo“))7 (10)

where ~ means that the ratio of the two sides goes to 1 as ¢ — 0.
To get asymptotics for large x, note that [30] gives
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o0
f(l‘) _ Zanx—l—an7
n=1

where

ap = ()" na+1) (1 + tan? (%))nm sin(nma). (11)

nlm
Stirling’s formula gives lim,, o, a, = 0, so there exists a constant D such that
if we write

flx) = alx_l_a(l + r(x)), (12)

then |r(x)| < Dz~ for all .

It is well-known that o, is a pure-jump process. The sequence consisting
of the jump sizes of o, between times 0 and ¢, ranked in decreasing order, has
the same distribution as the ranked sequence of points from a Poisson random
measure on (0, 00) with intensity measure p;(z) dz, where p;(z) = G, tz =172
It will be useful to consider size-biased picks from the jump sizes of o,. We
will use the following lemma, which can be deduced from Lemma 2.1 of [27].

Lemma 1. Fiz t > 0. Let J1(t) = Jo(t) > ... be the jump sizes of o, between
times 0 and t. Let J(t) be a size-biased pick from these jump sizes, and then
let J5(t) be a size-biased pick from the remaining jump sizes. Then,

_ zpe(2) fe(z — x)
zfi(2)

and the joint density of (o4(t), J7(t), J5(t)) is given by

peva,) = NG Z2 20), (13)

P(J} €da | oq(t) = 2) de,

This Lemma implies the following result about the distribution as ¢t — oo
of a size-biased pick from the jump sizes of o, (t), conditional on o, (t) = 1.

Lemma 2. Let J;(t) be a size-biased pick from the jump sizes of o, between
times 0 and t. Let iy denote the conditional distribution of t*/ (=) J¥(t) given
oa(t) =1. As t — oo, iy converges weakly to the Gamma(l — o, Ba/(1 — ))
distribution.

Proof. Tt follows from Lemma 1 that P(J;(t) € da|oa(t) = 1) = gi(x) de,

where the density g; is given by

zpe(x) fr (1 — x) _ Cotr™*fi(1 —x)
fi(1) fi(1)

for z € (0,1). Tt follows from (9) that fi(z) = f(t=*x)t='/* for all z > 0.
Using this fact and (14), we see that u; has density

gi(z) =

(14)
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he(z) = g (¢t~ O g) =1/ 0=)
C, t(t—l/(l—a)x)faf(t—l/a(l _ t—l/(l—a)x))t_y(l_a)
ft=2/)
C, x*af(fl/au —_ fl/(lfoa)x))
ft=1e)

for 0 < z < t*/(1=2) Using (10), it follows that for each 2 > 0, we have

Co a0 (1 — ¢/ (1)) =17/ Cl7e)
tlgrolo he(w) = tlglolo exp(—Btl/(lfo‘))

X exp(—B(tfl/a(l _ t*l/(lfa)x))fa/(lfa))
— tli)rgl(} Ca Iia eXp(—Btl/(lfa) ((1 _ til/(lia)x)fo‘/(lfoé) _ 1))

=C, x—ae—Baw/(l—a).

Note that if A = Ba/(1 — a), then A\!=® = «a/cos(ra/2), and thus C, =
Al=®/I'(1— ). Thus, h; converges pointwise to the Gamma(1 — o, \) density
as t — oco. The result of the lemma then follows from Scheffé’s Theorem. 0O

If Z has a Gamma(l — «, Ba/(1 — «)) distribution, then for all r > 0,

w Tr+1—a) ( Ba \" T'(r+1-—a) (cos(ra/2) r/(1—a)
E[Z"] = I'l-a) <1—a) T I'(l-a) ( o ) . (15)

We will need these moments in Sect. 6.
We now consider small-time asymptotics.

Lemma 3. Let J1(t) = Jo(t) = ... be the jump sizes of o, between times 0
and t. Let J{(t) be a size-biased pick from these jump sizes. If A is a Borel
subset of [0,1 — a] for some a > 0, then

thr%flP(Jf(t) EA|oa(t)=1) = / Coz (1 —z) " du. (16)
- A
If B is a Borel subset of [1/2,1— al, then
tlin(l)flP(Jl(t) €EB|oa(t)=1) = / Coz 1791 —2)" 17> da. (17)
- B

Proof. For all t > 0 and all Borel subsets A of [0,1—a], Lemma 1 implies that

tIP(J(t) € A aa(t) =1) = /A %t((ll)—x)dx

[ G fi(1 —x) .
- | e
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By (9), fi(D)tY/® = f(t=Y) and f;(1 — 2)t'/* = f(t~/*(1 — x)). There-
fore, (12) implies that a t'* /(1 — Dt) < fi(1)tY/* < ayt**V/*(1 + Dt)
and a;t' V(1 — )7 (1 = Dt(1 — 2)7) < fi(1 — o)tV < art' /(1
)71 — Dt(1 — x)~®). It follows that for all z € [0,1 — a], we have

(l_ﬁw1a(1-—lﬁ(1—%ﬂ“) < fi(1—2)

1+ Dt £:(1)
o1+ Dt(1—a)
<-2) (W)

Therefore, by the Dominated Convergence Theorem,

hmt 'P(Jf(t) € A|oalt) =1) /C 71 —2) T da,

which is (16).
If Jf(t) > 1/2, then J;(t) = J1(t). Therefore, it follows from the definition
of a size-biased pick from a sequence that for x € [1/2,1 — aL

P(Ji(t) € dz | oa(t) = 1) =27 'P(JF(t) € dz | oa(t) = 1).
Therefore, if B is a Borel subset of [1/2, 1], then

tT'P(Ji(t) € B | oa(t) =1) = /de
B

tfe(1)
—1l-«
(e 1-
_ [t ueg,
B fi(1)
Equation (17) follows from the Dominated Convergence Theorem as in the
proof of (16). O

Lemma 4. Let J1(t) = Jo(t) = ... be the jump sizes of o, between times 0
and t. Let J{(t) be a size-biased pick from these jump sizes, and then let J;(t)
be a size-biased pick from the remaining jump sizes. Let A be a Borel subset
of [0,1]? such that A C {(x,y) € [0,1]>:0<z+y < 1—a} for some a > 0.
Then

%%t—zp((Jf(t),J;(t)) €A|oa(t)=1)

2 —a,—« S —1l—a
:/ Gorty"(l=z—y) dzdy. (18)
A 1—x

Proof. Using (13), we see that
FEP(( (0. J5 (1) € A ] 00(t) = 1)
/ t2ap(x)ype(y) i1~z — y)
A (1 =) fi(1)

B C2o=y=%fi (1 —z—y)
o A e e

dz dy
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Equation (12) gives

(1 —x—y)—l—a(l — Dt —a)_”‘) _hl—z—y)

1+ Dt ()
S-z—y) (M)

1—-Dt

The lemma now follows from the Dominated Convergence Theorem. O

4 Small-time behavior of self-similar fragmentations

The proofs of Theorem 2 and Proposition 1 will use results on the small-time
behavior of self-similar fragmentations. In this section, we record some results
that we will need, and then we prove Proposition 2. First we give a way to
recover the dislocation measure v of a self-similar fragmentation with positive
index and no erosion from its semigroup.

Proposition 3. Let (X(t),t > 0) be a A-valued self-similar fragmentation
with characteristics (3,0,v), where 8 > 0. For all t > 0, let u; be the measure
on A defined by pui(A) =t P(X(t) € A) for all Borel measurable subsets A
of A. Then u; converges weakly to v as t — 0 on any subset of A that is the
complement of an open neighborhood of (1,0,0,...).

We will need the following lemma in the course of the proof:

Lemma 5. Let (&, t > 0) be a subordinator with Lévy mesure L(dx). Then
the measure t=1P(& € dz) converges to L(dz) as t — 0 weakly on any set
of the form (a,+00) with a > 0. Moreover, denoting the jump &, — £u— at
time u by 8&,, one has, as t — 0,

P(& > a and 8¢, < a for all u € [0,t]) = o(t).

Proof. The first part is classical, see e.g. [7]. For the second part, standard
properties of Poisson measures give

P(& > a and 8¢, > a for some u € [0,t]) = tL([a,0)) + o(t). (19)

On the other hand, the Portmanteau theorem (see [15]) and the first part
imply
1
lim sup i P(& > a) < L([a,0)). (20)

t—0

Hence, dividing (19) by ¢ and subtracting from (20) gives

1
lim sup 7 P(& > a and 8¢, < a for all u € [0,1]) < 0. O
t—0
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Proof of Proposition 3. Let As = {x € A: 21 <1—4§}. Any subset of A that
is the complement of an open neighborhood of (1,0,0,...) is a subset of As
for some § > 0. Therefore, it suffices to show that p; converges weakly to v
on Ags for all 6 > 0. Fix 6 > 0, and let G be a positive, bounded, continuous
function on A such that G(x) = 0 for ¢ As. By the definition of p; and the
definition of weak convergence, we need to show that

tligéflE[G(X(t))] :/AG(S)V(ds). (21)

Without loss of generality, suppose that X (t) = (X1(¢), Xa2(t),...) =
A(ITP)(t)) for a partition-valued fragmentation process IT(?) with the same
characteristics as X. We may also assume that I7(® is constructed by time-
changing a partition-valued fragmentation IT with characteristics (0,0,v) as
in Sect. 2. That is, if I,,(t) is the asymptotic frequency of the block of I1(t)
containing n and T,S") (t) is defined as in (6), then ¢ and j are in the same block

of IT)(t) if and only if i and j are in the same block of H(Ti(ﬁ) (t)). Also, we
suppose that IT is constructed out of a Poisson point process ((It, kt), t = 0)
with intensity k ® # as in Sect. 2. Notice that for every ¢ and ¢ > 0, we have
Ti(ﬁ)(t) < t because B > 0. It follows that (IT®) (u),0 < u < t) is completely
determined by the process (I, ku),0 < u < t).

Let (©:, t = 0) be the process such that @; = I whenever (I3, k) is a
point of the Poisson process such that k; is the least element of the block with
maximal asymptotic frequency of II(t) at time t—. If two or more blocks are
tied for having the largest asymptotic frequency, we rank the blocks according
to their smallest elements. As a consequence of Lemma 10 in [6], © is a Poisson
point process with intensity .

Let N; be the cardinality of {s € [0,t] : A(6s) € As}. Note that N; has a
Poisson distribution with mean tv(As). Therefore,

im ¢! < limt ! >9) =

Next, note that E[G(X (t))1{n,—0}] < [|Glloc P{X1(t) < 1=0}N{N; = 0}). If
m is a partition of N, let A;(m) denote the asymptotic frequency of the block
of m having the jth-largest asymptotic frequency. Since 5 > 0, we have

Xl(t)> H Al(@u)>1_ Z (I_Al(@u))

o0<u<t 0<u<t

Since t — 3 5 ,<;(1 — A1(Oy)) is a subordinator, it follows from Lemma 5
that P({X1(t) <1—0}N{N; = 0}) = o(t). Therefore,

}iﬁr}l’(l)tilE[G(X(t))l{Ntzo}] =0.

Thus, to prove (21), it remains only to show that
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. -1 o
tim ¢ E[G(X ()1 )] = [ Gl () (22)

Let 0 < £ < 1/2, and let > 0. Then there exists a positive number ¢q such
that P(I;(tp) <1—¢) <n for every i > 1. Fix t < tg. On the event {N; = 1},
define U such that A(O) € As. Note that U has a uniform distribution on
[0,1]. Define B to be the event that U < (1 — £)?. Let By be the event that
L(tU-) > 1—e¢e. Fix J € N. For 1 < j < J, let i; be the smallest integer
in the block of IT(tU) having the jth-largest asymptotic frequency, provided
that integer is in the same block as 1 at time tU—; otherwise, define i; = 0.
Let Bj; be the event that either i; = 0 or |I;; (Tl(f’)(t)) — I, (tU)| < e.

We have P(B|N; = 1) = (1 —¢)”. Also,

P(By|N;=1)>P(Li(t)21—¢) >1—n.

If B and By occur, then
tU
/ L(s)Pds <tU(1—e)P <t
0

which implies that 7\” (t) > tU. If, in addition, i; > 0, then tU < T, (t) < t.
In this case |1, (T\”(t)) — I, (tU)| < |L,(t) — I, (tU)| which, conditional
on B, By, and Ny = 1, is less than or equal to ¢ with probability at least 1 —n.
Thus,

P(BNByNBiN---NBy|N;=1)>(1—¢)’ - (J+1).

Suppose B, By, Bi,...,By all occur. If i; = 0, then X;(¢t) < & and
Ai(Ow) <e/(1—¢),s0|X;(t) — Aj(Ow)| < 2e. If i; > 0, then

I, (Ti(jﬁ)(t)) - Aj(@tU)’

L, (1) - 1, (tU)] + |1, (tU) = A5(Ow))]

<
<e+4e=2e¢.

Since the block of I7(%) (t) containing the integer i, has asymptotic frequency
I (T(ﬁ)(t))7 it follows that | X;(t) — A;(Ow)| < 2e. Thus, for ¢ < tg,

P(|X;(t) — Aj(Ow)| <2efor j=1,...,J [ Ny=1) 2 (1 —e)? — (J+1)n.

By letting e,7 — 0 and applying Theorem 3.1 of [15], we can see that the
conditional distribution of (X1 (t),...,X;(t)) given N; = 1 converges to the
distribution of (A1(G:v),...,A;(Ow)). By properties of weak convergence
in A (see chapter 4 of [15]), it follows that the conditional distribution of
X(t) given Ny = 1 converges as t — 0 to the distribution of A(@y), which
does not depend on ¢t. Thus,



348 Grégory Miermont and Jason Schweinsberg

lim ¢ B[G(X (1)) 1y,—1y] = lim t ' P(Ny = 1) E[G(X (1)) | Ny = 1]
= lim v/(As) e ) E[G(A(Ow))]
= 1mu e tr(4s) Gls) v(ds
/ G(s
which is (22). O

Remark 1. In this proposition and the following corollary, the assumption that
c =0, 8 > 0could be avoided. When ¢ > 0, we may follow essentially the same
reasoning as above because the drift at rate ¢ has little effect on the block
sizes for small t. When 8 < 0, however, the proof requires a more careful
analysis of the time-changes Ti(ﬁ ). We thus omit the proof here, as we are only
concerned with positive self-similarity indices.

From Proposition 3, we get the following result concerning the small-time
behavior of the asymptotic frequency of the block containing 1 in a partition-
valued fragmentation.

Corollary 1. Let (II(t), t > 0) be a partition-valued self-similar fragmenta-
tion with characteristics (8, c,v). Let \(t) be the asymptotic frequency of the
block containing 1 at time t. For all t > 0, let v be the measure on [0,1]
defined by v:(A) = t 1 P(\(t) € A) Let v; be the restriction of v to the ith
coordinate. Let y be the measure on [0,1] defined by

:Z/Axyi(dx) (23)

for all A. Then, v; converges weakly to v as t — 0 on [a,1—a] for all a > 0.

Proof. Let p; be the measure on A defined by u:(A) = t71P(A(II(t)) € A)
for all Borel measurable subsets A of A. Let p;; be the restriction of y; to
the i¢th coordinate. Then,

=§A$Mt7i(dx)-

Let f be a bounded continuous function defined on [a, 1 —a]. By Proposition 3,

ue,; converges weakly on [a,1 — a] to v; for all i. Therefore,
l1-a
lim f(@)y(dx) = hmZ/ x) p i (dz)

t—0 a

00 l1—a

l1—a
= %1_{% ; xf(x) pei(d) Z/ ) vi(d)

i=1

= [ swntan,



Self-similar fragmentations and stable subordinators 349

which implies the conclusion of the corollary. Note that interchanging the limit
and the sum is justified because p ;([a, 1 —a]) = 0 for all ¢ whenever i > 1/a,
so only finitely many terms in the sum are nonzero. a

We now prove Proposition 2, which shows that the small-time behavior
of some self-similar fragmentations is related to the stable subordinator of
index «. In the case of homogeneous fragmentations, our results are similar
to the results in section 4 of [6]. Our arguments are also similar to those
in section 4 of [6], but we work here with partition-valued fragmentations
rather than ranked fragmentations and prove the result for self-similar frag-
mentations with a positive index of self-similarity in addition to homogeneous
fragmentations.

Proof of Proposition 2. Since the fragmentation (X (¢),¢ > 0) is a binary
fragmentation with no erosion and positive index (3, we have that 1 — X;(t) =
>ooos Xi(t) for all t. Also, since o, is a pure-jump process, o4 (1) = Yoo, J;(1).

Therefore, to show (4), it suffices to show that =
M Xa(t), X3(t), ... ) —a (J1(1), J2(1),...).
Therefore, it suffices to show that
(X (), X1 () —a (J1(1),- .., Jn(1)) (24)

for all n € N.

As in the proof of Proposition 3, we may suppose that X (t) = A(IT\7)(t))
for all t, where IT® is the partition-valued fragmentation with characteris-
tics (0,0, v) that is obtained from a homogeneous framgmentation I, being
constructed out of a Poisson process ((I%, k), t > 0) with intensity x ® # as
in Sect. 2.

For all k € N, let (T,Ek), t > 0) be the Poisson point process on [0, 1/2]
with the property that T,Ek) = r if and only if (I}, k) = (m, k) for some
m € P such that the block of m with the second-largest asymptotic frequency
has asymptotic frequency r. Note that for all k, the Poisson point process
(rgk), t > 0) has characteristic measure vo(dz), where vy is the restriction
of v to the second coordinate. For all j, let K;(t) be the jth-largest point of

(rgl), 0 < s < t). Let 7;(¢) be the time such that rf_:)(t) = K;(t). Let N,(t) be
the smallest integer which is in the same block as 1 in the partition IT(7;(t)—)
but is not in the same block as 1 in IT(7;(t)).

Define another Poisson point process (0, t > 0) whose characteristic mea-
sure has density

q(z) = Co(s(x) v 1)z~

We now construct two new Poisson point processes by marking, as described in
chapter 5 of [24]. Let (@,E”, t > 0) consist of the marked points of (O, t > 0)
when a point at x is marked with probability 1/(s(z) V 1). Let (9,52), t>0)
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consist of the marked points of (O, t > 0) when a point at z is marked
with probability s(x)1[,1/9(2)/(s(2) V 1). Then, (9?), t > 0) is a Poisson
point process whose characteristic measure has density ¢;(x) = C, 27179,
and (@iz) , t > 0) is a Poisson point process whose characteristic measure has
density g2(x) = Co 271" %s(2)10,1/9) ().

Let L;(t) denote the jth largest point of (@(1) 0 < s <t), and let K,(t)
denote the jth largest point of (99, 0 < s < t). If the n largest points of
(05, 0 < s < t) are also points in both (@(1) 0<s<t)and (@9), 0<s<),
then L;(t) = K;(t) for j = 1,...,n. For all z > 0, the probability that
the largest point of (@4, 0 < s < t) is less than = approaches 1 as t — 0.
Since lim, .o s(z) = 1, we have lim, .o s(x)1j9,1/2)(z)/(s(z) V 1) = 1 and
limy_,01/(s(z) V1) = 1. It follows from these observations that

lim P(L;(t) = K;(t) for j=1,...,n) = 1. (25)

Note that (Li(t),...,Ly(t)) has the same distribution as the sizes of the n
largest jumps of (04(s), 0 < s < t). By scaling properties of the stable subor-
dinator of index «, it follows that

VL), L) =a (A1), Ju(1), (26)

Since (Ki(t), ..., Kn(t)) =4 (Ki(t), ..., Kn(t)), It follows from equations (25)
and (26), and Theorem 3.1 in [15] that

V(K (), Kn(8) —a (Ji(1), .-, Ju(1)) (27)

ast — 0 for all n € N.
Let € > 0. We will show next that for all n € N, we have

lim Pt K (t) =t X4 (t)| < cfor j=1,...,n) = L. (28)

Equations (27) and (28), combined with Theorem 3.1 of [15], establish (24),
which suffices to prove Proposition 2.

Given 0 < § < 1/2 and i € N, let A\! be the asymptotic frequency of the
set of all integers m such that m is in the same block as ¢ in every partition
7 for which Iy = 7 and ks = i for some s € [0,¢]. Let Aj, be the event that
Al >1—4.If Aj, occurs, then the block of II(t) containing 1 has asymptotic

frequency at least 1 — 4. Also, since 3 > 0, it follows that Tf (t) < t for every
i > 1. Therefore, taking i = 1, if A}, occurs, the block of H(ﬁ)(t) containing 1
has asymptotic frequency at least 1-6.

Let Bj; be the event that 7;(t) < TP(t). Note that this is the same as

the event that 7;(t) < Tf,j( (t) because 1 and N;(t) are in the same block

before time 7;(¢). Suppose A5 ¢ occurs, and suppose Ay g( ) and Bj ; occur for
j=1,...,n. Then, for j = 1,...,n, the block of II(7;(t)—) containing N;(t)
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has asymptotic frequency between 1 — ¢ and 1, the block of II(7;(t)) contain-
ing N;(t) has asymptotic frequency between K;(t)(1 — ¢) and K;(t), and the
asymptotic frequency of the block of IT (5)(t) containing N, (¢) has asymptotic
frequency between K;(t)(1 — 6)? and Kj;(t). Furthermore, the largest of all
blocks of IT\#)(t) not containing any of the integers {1, Ny(t),..., N,(t)} has
asymptotic frequency at most max{dK(t), K,+1(t)}. Indeed, this block could
be obtained from the n 4 1-th largest fragmentation of the fragment contain-
ing 1, which since § < 1/2 is also the largest one, in which case its asymptotic
frequency is at most K,,11(t). Alternatively, it could be obtained from one of
the fragments containing some N;(¢) for 1 < j < n. Since we assume that
Agz(t) occurs for every 1 < j < n, the size of these fragments can not be
reduced by more than a factor of 1 — §. Therefore, at time ¢, the fragments
that do not contain any of the N;(¢), for 1 < j < n, but are obtained by
splitting the blocks containing one of the N;(t), 1 < j < n, have asymptotic
frequency smaller than §K;(t) < 0K1(t).
Therefore, if in addition §K;(t) < K, (t), then

K;(1)(1=06)* < Xj41(t) < Kj(t) (29)

forj=1,...,n.
Note that lim; .o P(Aj,) = 1 for all § € (0,1/2). Likewise, for all j € N

and § € (0,1/2), we have lim;_o P(Agz(t)) = 1. We now prove that

lim P(Bj ;) = 1. (30)

Let € > 0. Choose § small enough that 1—(1—6)? < /2. Then choose t small
enough that P(A},) > 1 —¢/2. Suppose A}, occurs. Then the fragment of
I1(s) containing 1 ‘has asymptotic frequency larger than 1 —§ for 0 < s < t.
It follows from (6) that

(1-6)°t<T () <t

Since 7 (t) is uniform on (0, ), we have P(Bj; | A5 ;) > 1—¢/2. Since P(Aj,) >

2

1 —¢/2, it follows that P(B;;) > 1 — ¢, which implies (30). Last, by (27),

%%%%P(élﬁ(t) < Ky(t) = 1.

These results, combined with (29), prove (28). O

5 Large-time behavior of self-similar fragmentations

In [12], Bertoin studied the asymptotic behavior of self-similar fragmentations
as t — oo. Using facts from [14] about semi-stable processes, he proved the
following result.
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Lemma 6. Let (X (t),t > 0) = ((X1(t), X2(t),...), t = 0) be a self-similar
fragmentation with characteristics (3, ¢, v). Suppose v({x : > ;= x; < 1}) = 0.
Also assume that there exists no r > 0 such that the size of every fragment at
time t > 0 lies in the set {e %" 1k =0,1,...}. For ¢ >0, define

P(q) =clg+1)+ /A (1 - ix?H) v(dx). (31)

Assume that
P'(04+)=c+ Z/ x;log(1/x;) v(dz) < occ. (32)
i=17A

If B =0, then limy_,o t~log(X1(t)) exists and is finite almost surely. If
6 >0 and ¢ =0, define

ZX 6t1//3X ®)-

Then, the random probability measures ps converge in probability as t — oo
to a deterministic limit pso, for the weak topology on measures. Furthermore,
for k € N, we have

| v utan = s5mm HM (33)

Suppose the hypotheses of Lemma 6 are satisfied, and that 8 > 0 and ¢ = 0.
Let A(t) be a size-biased pick from the sequence X (¢) = (X1 (t), Xa(t),...).
Note that s is the conditional distribution of t'/#\(t) given X (t). The proof
of the convergence in probability of p; to e in [12] actually shows that for
every f continuous and bounded, we have

tlirgoEU fly utdy] /f ) Hoo(dy).

Therefore, the unconditional distributions v, of t'/#\(t), given by
7(B) = Elu(B)),

converge weakly to peo as t — oo.

6 One-dimensional distributions

Our goal in this section is to prove Theorem 2. The first step is Lemma 7.
Once this lemma is proved, there is, for each a € (0,1), only one remaining
candidate for a self-similar fragmentation that could satisfy (2). To prove
Theorem 2, we then only need to show that this fragmentation does indeed
satisfy (2) only when oo = 1/2.
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Lemma 7. Fiz « € (0,1). Suppose (X(t),t > 0) is a self-similar fragmen-
tation with characteristics (3, c,v) such that (2) holds. Then f=1— « and
¢ = 0. Also, (X(t), t > 0) is binary, and the restriction v1 of v to the first
coordinate has density ho(x) = Coux™'7*(1 — x) 711 ,1)().

Proof. Write the components of X (t) as (X1 (¢), X2(t),...). Let Ji(¢), J2(t), . ..
be the jump sizes of o, up to time ¢. Note that Y .o, J;(t) = o4(t), so the
conditional distribution of Y :° J;(¢) given o4(t) = 1 is a unit mass at 1.
Therefore, if (2) holds, we must have > >~ X;(¢) = 1 almost surely. It follows
from the construction in Sect. 2 that ¢ = 0. Also, by section 3.3 of [12], we
have 8 > 0.

Let A(t) be a size-biased pick from the sequence (Xi(t), X2(t),...). It
follows from Lemma 2 that if (2) holds, then the distribution of ¢/ =) \(t)
converges to a nondegenerate limit. Combining this result with Lemma 6, we
get B=1-—q.

Suppose, for some a > 0, we have v({x € A:x1 +22 <1—a})=b>0.
Then, by Proposition 3 and the Portmanteau Theorem,

ligniglft_lP(Xl(t) +Xo(t) <1—a)>b.
Therefore, if (2) holds, then

lim i(])nft_lP(Jl(t) + J2(t) <1—a) >b.
Let J;(t) be a size-biased pick from the jump sizes Jy(¢), J2(t),..., and let
J3(t) be a size-biased pick from the remaining jump sizes. Note that J;(¢) +
J;(t) < Jl(t) + Jg(t), SO

lim iglfflp(J;‘(t) +J5(t) <1—a) >b. (34)
However, Lemma 4 implies that if A = {(z,y) € [0,1]>:0<z+y <1 —a},
then

Clay *(l-w—y "¢
1-—2z

}iilg)t_QP(Jf(t)+J§(t) <l-a)= /A dz dy < oo,
which contradicts (34). We conclude that v({z € A: 2z +22 <1—a})=0
for all @ > 0, which means X is a binary self-similar fragmentation.

Let p; be the measure on A defined by u;(A) = t7'P(X(t) € A). By
Proposition 3, as t — 0, us converges weakly on complements of open neigh-
borhoods of (1,0,...) to v. Let fi; be the measure defined by ;(B) =
t~1P(X1(t) € B). Let 11 be the restriction of v to the first coordinate. Then
iz converges weakly on [0,a] to 11 as t — 0 for any a < 1. It follows that

lim £ P (X1 (¢) € [0,a]) = lm (0. al) = 11 ([0, ] (35)
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for all @ € [0, 1) (the only interesting case is a > 1/2 since v; does not support
[0,1/2]) such that the function = — v1([0,2]) is continuous at a. If (2) holds,
then we can combine (35) with (17) to obtain

/Oa ha(x)dz = v1([0,al)

for all @ € (1/2,1) such that x — 11([0, z]) is continuous at a. Thus, h, is the
density of v4. O

The binary self-similar fragmentation whose characteristics are (1/2,0,v),
where the restriction of v to the first coordinate has density hi/s, is the
Aldous—Pitman fragmentation. Therefore, Theorem 2 follows immediately
from Lemma 7 and the following lemma.

Lemma 8. Let (X (t), t > 0) be a binary self-similar fragmentation with char-
acteristics (1 — «,0,v), where the restriction of v to the first coordinate has

density he. If (2) holds, then o = 1/2.

Proof. Let A(t) be a size-biased pick from the sequence of X (t). Let § = 1—a.
Let v be the law of /(=) \(¢) = t'/#\(t). Then, by results in Sect. 5, v
converges weakly to some measure i, as t — oo. Also, for all k € N, (33)
gives

/Oy too(dy) = 5@, Hmﬁ

where @ is the function defined in (31).
Suppose (2) holds. By Lemma 2, pio is the Gamma(l — o, Ba/(1 — «))
distribution. By (15),

/00 S (dy) = LBE1—0) <Cos(ﬂ.a/2))ﬁk/(1a)
0

I'l-a) e
Bk +B) (cos(ma/2)\'
- ()

for all k € N. It follows that

1 k—1

B (0+)

i I'(Bk + B) [ cos(ma/2) ‘
T (36)

for all k € N. By considering (36) for k + 1 and k and taking the ratio of the
two equations, we get

Bk +2p) (cos(ra/2)\  k
TG+ ) ( a )‘@(w)' 37)

Since a/ cos(ma/2) = C, I'(1 — a) = G, I'(B) by (8), equation (37) implies

' I:1

=1
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_ G kI (B)I(Bk +5)
D(kp) = T3k +29) . (38)
By Stirling’s Formula,
. (kB)°I(Bk+5) _
R Y R
Combining this result with (38), we get
Jim EPlo(kB) = G, T(B)5~7. (39)

We will now compute limy_.o, k°~1&(kf) directly from (31). We will show
that the result agrees with the right-hand side of (39) only when 8 = 1/2,
which will prove the lemma. Using the definitions of v and h,, equation (31),
and the fact that ¢ = 0, we have

B(kB) = /A (1 - izfﬁﬂ) v(dz)

1/2
= C’a/ (1- P (1 — x)kﬁ+1):ﬂﬁ_2(1 —z)% 2 da.
0
By making the substitution y = kx, we get

Kl o(kB) = Gy /m(l — (k™M) — (1= k)t
X yg_Q(l — k)P 2dy.
Note that for each fixed y > 0,
Jim (1= (6 71y) 7 = (1= By (= BT ) T 02 ()
=(1- e_ﬁy)y’g_Q.

If 0 <y < k/2, then (1 — k~1y)%=2 < 2278 < 4. Also, if 0 < y < 1/2, then
k +— (1 —k~1y)**+1 is an increasing function, and therefore 1 — (k=1y)*8+1 —
(1— k= My)RB+1 <1 — (1 —5)P+ <1 - (1—1y)? < 2y. Therefore, for all k € N,
(1 _ (k—ly)kﬁ-i-l _ (1 _ k—ly)kﬁ-i-l)
<y 21— k) P g2 (1) < 42y A Y,

and fooo 42y A l)yg’2 dy < oco. Hence, by the Dominated Convergence Theo-

rem,

Jim EP1o(kp) = G, / (1 —e P¥)yP—24dy.
— 00 0

Integrating by parts, we get
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. _ CaB [ 51 - G B _
lim k%~ '®(kp) = Fle Py dy = r & 4
Jim (kB) ), v =15 (B)8 (40)
Combining (39) and (40), we get /(1 — ) = 1, which means § = 1/2 and
therefore o = 1/2, as claimed. O

7 Mass of a tagged fragment

Our goal in this section is to prove Proposition 1, which pertains to the dis-
tribution of the asymptotic frequency of the block containing 1 in a partition-
valued self-similar fragmentation or, equivalently, the distribution of a size-
biased pick from a self-similar ranked fragmentation.

According to [11], the tagged fragment in a self-similar fragmentation with
index 3 has to be the inverse of some increasing semi-stable Markov process
of index 1/ started at 1. A semi-stable Markov process with index 1/8 > 0 is
a real-valued strong Markov process X satisfying the following self-similarity
property. If, for x > 0, P, denotes the law of X starting from Xy = x, then
for every k > 0, the law of the process (kX (k7s), s > 0) under P, is the
same as the law of (X (s), s > 0) under Pj,.

Lemma 9. Let G(x,s) be a function defined on [0,00)? which is increasing
in x and s. Suppose that there exists a semi-stable Markov process X with
index 1/8 such that (G(x,04(t)), t = 0) has the law of X started at x. Then
G is of the form

G(z,s) = (xﬁ/a + Ks)a/ﬁ

for some K > 0.
Proof. By the scaling property, we have
(kG(z,0a(k7P1)), t = 0) =4 (kG (2, k™% ?04(1)), t = 0) (41)

for all K > 0. Since X is a semi-stable Markov process with index 1/8, we
have for all k£ > 0,

(kG (z,00(kPt)), t > 0) =4 (G (kz,0a(t)), t > 0). (42)

Given k and z, define f(s) = kG(z,k~%/%s) and fa(s) = G(kx,s). Then,
f1 and fa are increasing functions, and equations (41) and (42) imply that
fi(oa(t)) =a f2(oa(t)) for all ¢ > 0. For an increasing function f, define
F71(2) = sup{a : f(x) < 2}. We have P(f1(0a(t)) < 2) = P(f2(0a(t)) < )
which means P(c,(t) < f; '(2)) = P(oa(t) < fy'(2)). Since for all t > 0
the density of o,(t) is positive on (0,00), it follows that f; '(2) = f; '(2)
for all z. Therefore, if fi(s) < fa(s), then fo(u) < fi(s) for all u < s, and
fi(u) = fa(s) for all u > s. It follows that both f; and fo have a jump at s.
Thus, f1(s) = f2(s) for all but countably many s. Let g(s) = G(1, s). Then,
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for all z, we have G(z, s) = xg(z~%/*s) for all but countably many s. For any
fixed s > 0, we have P(0,(t) # s for all t) = 1. Therefore, with probability
one, G(z,04(t)) = 2g(xz~P/*0,(t)) for all t. Thus, X under P, has the same
law as (zg(z="/%04(t)), t = 0) for some increasing function g.

By the Markov property,

Py(X(t)<z)=q Po(X(s+t)<z| X(s)=y).
We have P, (X (t) < 2) = P(o4(t) < y?/*g~1(2/y)). Also,

Po(X(s+t)<z| X(s)=uy)
= P(oals +1) < 2?97 (2/2) | 0ul(s) = 2797 (2/y))
= P(oa(t) <a”*(g7 (z/) — g7 (y/x))).

It follows that for every z < y < z, we have

e G)- () - )

Writing © = y/2x and v = z/y gives that for every u,v > 1, we have
g wv) = /g7 (0) + g7 ().

Taking v = = and v = 2, we get g~ *(2z) = 27/%g=1(2) + g~ '(z). Taking
u=2and v =x we get g~'(2z) = 20/%g=(2) + g~ (2). It follows that
g (x)(2%/* —1) = g=1(2)(2%/* — 1), which means ¢~ (z) = L(z?/® — 1) for
some L > 0. Thus, g(s) = G(1,5) = (1 + K5)*/? for all 5, where K = L1 Tt
follows that for all z, we have G(z,s) = 2G(1,2=°/%(s)) = (xP/* 4 Ks)*/#
for all but countably many s. Since G is increasing in x and s, we conclude
that G(z,s) = (%/® + K5)*/? for all 2 and s. a

Proof of Proposition 1. Suppose that A(¢) is of the form g(o,(t)) for some
decreasing function g. By Lemma 9 and the preceding discussion, g must be
of the form g(z) = (1 + Kz)~*/# for some 3 > 0.

Set h(x) = g~ Hx) = K~ (z=8/* —1). Then W' (2) = —BK 1o~ B/®)=1/q,
Let f: be the density of o,(t), and let f = f1. Then the density of A(t) is
given by

k(z) = fi(h(2))|W (z)] = F(EY K @l — 1))t/ P K lg=(B/e)—1
a
for all z € (0,1). Note that

-1

(t—l/aK—l(x—B/a _ 1)) _O‘t—l/aK—lx(—ﬂ/a)—l — tKa.’Lﬂ_l(l _ xﬂ/a)—l—a.

Therefore, it follows from (12) and the Dominated Convergence Theorem that
if A is a Borel subset of [a,1 — a] where a > 0, then
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B po-1(1 —afloytoeqy,  (43)

lim tilp()\(t) € A) = / a1 K
t—0 A
where ay is given in (11).

Let v; be the restriction of v to the ith coordinate, and let v be the
measure defined by (23). By (43) and Corollary 1, v is the measure on [0, 1]
with density a3 K*Ba~tx?~1(1—2/*)~1=* for x € (0,1). Since IT is a binary
fragmentation process,

v(A) = / v (dz) +/ x vo(dx).
AN[1/2,1] AN[0,1/2]

Therefore, vy has density ki (z) = a1 K®Ba~ 2P~ 2(1 — 2P/*) 7171y 5 4 (2),
while 1 has density ko(z) = a1 K*Ba 12 ~2(1 — 2P/*) =171 1 /5 (). How-
ever, since v is concentrated on the set {x : x; + 22 = 1}, we must have
ki(x) = ka(1 — ) for all z. This gives that

( 1— gf/e )‘1‘”‘ _ (-2

1—(1—x)b/e zh—2

Comparing asymptotic behavior as z — 0, we get 8 = « and then a =
1/2. Note that a; = (2m)7Y/2 = Cy/ when o = 1/2. Thus, v;(dz) =
(2m) "2 K 2273/2(1 — )73/21 /5 1 (2) dz, which means that (A(II(t)), t >
0) is the Aldous—Pitman fragmentation up to a multiplicative time constant,
as claimed. ad
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