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1 Introduction

The Brownian sheet is a centred Gaussian Process indexed by s = (s1, s2) ∈
R

2
+. Its covariance is given by

cov
(
W (s),W (t)

)
= (s1 ∧ t1)(s2 ∧ t2);

this and path continuity fully define the process.
This note concerns bubbles ; these are components of {t : W (t) �= 0}. We

think of them as natural higher dimensional time analogues of excursions
away from 0. We shall refer to an x-bubble for x > 0 as a bubble on which
the maximum value taken by the Brownian sheet lies in the interval (x, 2x).
For the restricted purposes of this article we will also require that bubbles be
components that are entirely contained in the rectangle [0, 1]2. In referring to
components whose maximal value is in the interval (x, 2x) but which are not
necessarily contained in [0, 1]2 we use the term x-component .

The local time (at zero) for rectangle [x1, x2]× [y1, y2] is given by

L([x1, x2]× [y1, y2]) = lim
t↓0

1
2ε

∫ x2

x1

∫ y2

y1

I|W (s,t)|<ε ds dt

where I denotes and will denote the indicator function. Of course it has to be
proven that this limit exists (see e.g. [E], [R]). In fact these works show that
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the function L is a continuous function for the four arguments x1, x2, y1 and
y2 and that local time yields a measure L(ds, dt) = dL(s, t) supported on the
0-level set. Sometimes we will regard time rectangles as intervals in two space
and write [x,y] instead of [x1, x2]× [y1, y2]. Always it will be understood that
x1 the first component of x is less than or equal to y1 the first co-ordinate of y
and similarly for the second co-ordinates. The results here are proved directly
for the local time for [0, 1]2, L = L([0, 1]2) and for components contained in
this rectangle, but it will be clear that the arguments and techniques extend
to arbitrary bounded time rectangles.

The Lebesgue measure of the time that the sheet spends at zero is zero.
Nonetheless we think of L as measuring the amount of time spent around
zero. For Brownian motion there is a clear and beautiful theory relating local
time to excursions (see e.g. [RY], chapters VI and XII, or [RW], chapter VI,
especially pages 414–424) and it is well known, for instance, that as x ↓ 0 the
number of excursions by time t of Brownian motion from 0 having maximum
in (x, 2x), (Nx(t)), satisfies

xNx(t)− 1
4
L(t)

pr−→ 0, (1)

as x tends to zero. Here L(t) denotes the local time of the Brownian motion
over the interval [0, t] defined in an analogous manner to the above.

We wish to prove:

Theorem 1. Let Nx be the number of x-bubbles of a Brownian sheet, and let
the local time of the Brownian sheet on [0, 1]2 be L. Then

x3Nx − c

∫

[0,1]2
st dL(s, t)

pr−→ 0, (2)

as x tends to zero, for some strictly positive constant c.

This result and Corollary 2 (proven in Section 1) with scaling easily lead to

Corollary 1. Let Mx be the number of bubbles of a Brownian sheet which
have maximum value greater than x and let the local time of the Brownian
sheet on [0, 1]2 be L. Then

x3Mx − c′
∫

[0,1]2
st dL(s, t)

pr−→ 0,

as x tends to zero, for some strictly positive constant c′.

Corollary 1 was conjectured in [Kh]. In that paper it was shown that this
conjecture is of the right order in the sense that for all ε > 0, as x→ 0,

x3+εMx
pr−→ 0 and x3−εMx

pr−→∞.
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Many of the ideas used in this note originate in that paper.
In the remainder of the introduction we will give our guiding heuristic

as to why this should be true and then discuss the overall approach to the
problem that we will follow.

One way to see (1) or at least to see why Nx, the number of excursions
having maximum in (x, 2x) contained in interval (0, 1), should be of order
1/x is to note that when Brownian motion hits, say, x then it has chance 1/2
of returning to zero before reaching (2x,∞). One would expect then that a
reasonable proportion of time spent by Brownian motion in [0, x] would cor-
respond to time for excursions to [x, 2x]. But the existence of a continuous
local time at 0 for Brownian motion means that the time spent in [0, x] up to
time 1 is xL(1) + o(x). Furthermore the length of an excursion having maxi-
mum value in [x, 2x] is of order x2. Dividing xL(1) by x2 almost gives us (1).
Given the linear time this heuristic can easily be turned into a rigourous proof
of (1). For (2) the heuristic is similar with the expected size of a bubble having
maximum size in [x, 2x] now being (x2)2 = x4 instead of x2. But it is not so
straight forward to construct a proof.

Our approach is first to remove some troublesome extreme cases: we show
that there are “not too many” x-bubbles of size � γx4 for γ small, since this
would require many large deviations for the Brownian sheet, and that there
are “not too many” x-bubbles of large diameter, meaning of diameter � Mx2

for M large.
This reduction means that the bubbles that count are for the most part

regular-sized components. Locally (for small x) the Brownian sheet in square
[t1, t1 +Kx2]× [t2, t2 +Kx2] is (after due rescaling of time) like the difference
of two independent Brownian motion’s process X(s, t) = B(s) −B′(t) where
the Brownian motions are of speeds t2 and t1 respectively. The reason that our
result concerns

∫
[0,1]2

st dL(s, t) and not L comes from this time inhomogeneity
of the process.

The difference of two Brownian motions process has a nice bubble theory
discussed in [DW], [DW2] and this enables us to compare as x → 0, the
distribution of the number of x-bubbles of area in [γx4,∞] entirely contained
in [t1, t1+Kx2]×[t2, t2+Kx2] conditional on W (t1, t2) = yx to the distribution
of the number of 1-bubbles for X contained in [0, 1]2 of area at least γ, given
X(0, 0) = y.

As an additional hygene measure we also show that the number of x-
bubbles near the co-ordinate axes is small. The basic argument then is to
divide up [ε, 1]2 into a grid of rectangles which are small (though their dimen-
sions will not depend on x). On these small rectangles the Brownian sheet
will be almost time homogenous. We will then divide up a given rectangle
R into a grid of horizontal spacing length c1x

2 and of vertical length c2x
2.

We will argue that if the (i,j) grid-rectangle has bottom left vertex tjk, then
for some function g, the number of bubbles in R is approximately equal to∑

jk g(W (tjk/x)) for some bounded function g of compact support. We then
employ the following simple result,
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Lemma 1. Let g be a bounded function of compact support. For a rectangle R
bounded away from the axes if R is divided up into a grid {tjk} of horizontal
spacing c1x

2 and vertical c2x
2, then

x3
∑

jk

g
(
W (tjk)/x

)
converges in probability to

1
c1c2

(∫ ∞

−∞
g(u)du

)
L(R)

as x tends to zero.

Proof. We fix an interval [−K,K] and consider the bounded Borel functions
with this interval as their support. We identify this vector space with the
Borel measureable functions on [−K,K]. Let H be the collection of bounded
Borel functions g on [−K,K] so that

x3
∑

jk

g
(
W (tjk)/x

)
converges in probability to

1
c1c2

(∫ ∞

−∞
g(u) du

)
L(R)

as x tends to zero. By linearity of the sums and the integral we immediately see
that H is a vector space. Furthermore, as is easily seen by a second moment
argument, the result holds true for functions of the form g(u) = Ic1�u�c2 ,
−K � c1 < c2 � K (where I( . ) denotes an indicator function). This includes
constant functions. Also if gn is an increasing sequence of functions n H
converging pointwise to bounded function g, then by bounded convergence

∫
gn(u) du −→

∫
g(u) du.

Equally the expectation of x3
∑

jk g(W (tjk)/x) − x3
∑
jk gn(W (tjk)/x) con-

verges to 0 as n→∞. We conclude that under these conditions g must also be
in H and so as a direct consequence of the function version of the Monotone
Class Theorem (see e.g. [RY], Theorem 0.2.2) one concludes that for every
Borel function g supported on [−K,K] the lemma holds. The entire lemma
follows by the arbitrariness of K. 
�

The paper is planned as follows: Section 2 is devoted to establishing that
one may discard from consideration bubbles that are of too small an area, of
too large a diameter or that are too close to the time axes. The third section
considers the conditionally expected number of x-bubbles, reasonable in the
above sense, that occur in a time rectangle [t1, t1 + Kx2/t2, t2, t2 + Kx2/t1]
given that W (t) = yx. Finally the elements are gathered together to finish
the proof of Theorem 1 in the final section.

I wish to thank the anonymous referee for a heroic effort.

2 Section Two

Loosely speaking, we wish to show that “most” x-bubbles contain a square of
time of side length of the order x2. We also wish to show that “most” bubbles
of size x are of diameter of the order x2 and not close to the time axes.



200 Thomas S. Mountford

Proposition 1 below bounds the number of x-bubbles having small area.
Essentially it follows because a bubble with a small area requires extreme
variation in the sheet.

Corollary 2 below bounds the number of x-bubbles close to the axes, while
Corollary 3 deals with bubbles of large diameter.

Proposition 1. For all δ > 0, there exists ε > 0 so that the expected number
of x-components that attain value x within [0, 1]2 and do not contain a square
of side x2ε with a vertex within [0, 1]2 is bounded by δ/x3.

Remark 1. The methods used in the proof of this proposition apply equally
well if the Brownian sheet is replaced by the difference of two Brownian mo-
tions. The proof of this proposition thus implies that for the difference of two
Brownian motions and a nonrandom x the number of x-components on any
bounded rectangle is a.s. finite.

This proposition is proven by showing that corresponding to each bad or
small bubble is an “extreme” excursion for a Brownian motion

Bs,u(t) = W (s, t), t � 0, or Bt,h(s) = W (s, t), s � 0.

Note in this proposition we are considering bubbles that are not necessarily
strictly contained in [0, 1]2.

We easily obtain the following corollary.

Corollary 2. For all δ > 0, there exists ε > 0 so that the expected number
of x-components that attain value x within [0, ε]× [0, 1]∪ [0, 1]× [0, ε] is less
than δ/x3.

In turn Corollary 2 begets

Corollary 3. For all δ > 0, there exists M <∞ so that the expected number
of x-components attaining value x within [0, 1]2 and of diameter > Mx2 is
bounded by δ/x3.

We now set ourselves to showing some technical results with the ultimate
goal of proving the above results.

Definition 1. An excursion e = (e1, e2) of maximum in (x/2, 2x] for a Brow-
nian motion B, is in A(x, n) if

sup
e1�p<q�e2, |p−q|<x22−n

|B(p)−B(q)| > x

32
.

Lemma 2. For a Brownian motion of speed σ � 1, there exists a strictly
positive constant k (uniformly over speed σ � 1) so that the probability that
an excursion whose maximum is in [x/2, 2x] (randomly chosen according to
excursion measure) is in A(x, n) is bounded by e−2nk.
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Proof. By scaling it suffices to treat the case σ equal to 1 and so for the
proof B will be a speed one Brownian motion. Before directly considering a
Brownian excursion we deal with Brownian motion on time interval [0, x22n].
We choose this time interval which is very long for an excursion since the
probability that a Brownian excursion whose maximal value lies in (x/2, 2x)
should have lifetime greater than (2n − 1)x2 is certainly less than K ′e−c

′2n

for finite strictly positive constants K ′, c′.
Let T = inf{t : |B(t)−B(s)| > x/32 for some s ∈ [t− x22−n, t]}.
Let S = inf{t > T : t ∈ x22−nZ} be the first time after T that is in the

lattice x22−nZ.
By the strong Markov property and symmetry, we have

P

{
sup

S−2·x22−n�s�S
|Bs −BS | >

x

32

∣∣∣∣ FT
}

� 1/2.

Thus for a Brownian motion B

P
{

sup0<|p−q|<x22−n0<p,q<x22+n |Bp −Bq| >
x

32

}
= P

{
T < x22n

}

� 2P
{⋃

t∈x22−nZ∩[0,x22n+x2)
Vt

}

(where Vg is the event {supg−2x22−n�s�g |Bs −Bg| > x/32})
� 3× 4n P{V2x22−n}

� 6× 4n P
{
N(0, 1) >

√
2n

32
√

2

}

� K4ne−2n/4096 � Ke−c2
n

.

Given this we note that with probability bounded away from zero, B will
begin an excursion from 0, having maximum value in [x/2, 2x], in time [0, x2]
and that, outside of probability Ke−c

′2n

this excursion will be completed by
time x22n. Thus the claimed result is shown since the inequality need only be
proven for large n. 
�

Corollary 4. For s ∈ [0, 1], let Z(s, n, h) be the number of excursions
in A(x, n) by Brownian motion Bs,h that originate in [0, 1] (similarly for
Z(s, n, u)). Then

E

[
∑

s∈x22−nZ∩(0,1]

Z(s, n, h) + Z(s, n, u)

]
� K e−c2

n

x3
.

Proof. By symmetry we need only consider the expectation of
∑

s∈x22−nZ∩(0,1]

Z(s, n, h).

Fix s ∈ x22−nZ ∩ (0, 1]. By Maisonneuve’s formula for Brownian excursions
from zero and the bound of Lemma 2,
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E[Z(s, n, h)] � e−k2
n 1

2x
E
[
Lh,s1

]
� e−k2

n 1
x

√
1

2πs
,

where E[Lh,s1 ] is the local time at zero for Brownian motion Bs,h. Thus

E

[
∑

s∈x22−nZ∩(0,1]

Z(s, n, h)

]
� e−k2

n K

x3

(
x2

∑

s∈x22−nZ∩(0,1]

√
1
s

)
.

From which the result is immediate. 
�

Recall Bs,u = W (s, . ), Bt,h = W ( . , t). For, say, Bs,u with s a fixed
positive, we want to consider how many excursions e = (e1, e2) of Bs,u to a
maximum value in (x/2, 2x) are such that

sup
0<p−q<2−nx2 p,

q∈e

sup
0<|s−s′|<2−nx2,

s<3/2

|W (s, p)−W (s′, p)−W (s, q) + W (s′, q)| � x

32
.

(3)
Let this number be Xs(x, n). Let the analagous quantity for Bs,h be Y s(x, n).

Lemma 3. For s fixed and positive, 0 � x � 1 and Xs(x, n) as above,
E[Xs(x, n)] = E[Y s(x, n)] � κ e−c2

n

for finite and positive κ, c not depending
on x � 1.

Proof. Let us define, with respect to filtration

Fr = {W (t1, t2) : 0 � t1 <∞, 0 � t2 � r},

stopping times (Ti)i�0 by T0 = 0 and

Ti = inf{v > Ti−1 : ∃Ti−1 � u < v such that, for some |s− s′| < 2−nx2,

|W (s, u)−W (s, v)−W (s′, n) + W (s′, v)| � x/32}.

Then
Xs(x, n) � sup{j : Tj � 2}.

But P{T1 � y} (by the Orey–Pruitt maximal inequality, [OP]) is domi-
nated by

8
( y

2−nx2
+ 1

)
P
{∣∣N

(
0, 2−2nx4

)∣∣ > x/32
}

� K
( y

2−nx2
+ 1

)
e−

c
x2 22n

� Ke−c2
n

for y � 2.

Since Ti − Ti−1 are i.i.d. random variables the result follows from standard
arguments on geometric random variables. 
�
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The basic idea underlying the proof of Proposition 1 is that for every x-
component G in which W attains value x inside [0, 1]2 (even though G itself
may not be entirely contained in [0, 1]2), there is by definition t = (t1, t2) ∈
G ∩ [0, 1]2 so that W (t) = x. If |G|, the area of G, is small then it must be
the case that for

v1 = inf{t > t1 : |W (t, t2)− x| > x/8}
v2 = inf{t > t2 : |W (t1, t)− x| > x/8},

either:
(i) mini(vi − ti) is small;
(ii) we have a large white noise contribution for some rectangle from

bottom-left vertex equal to t.
This will enable us, for some s and some positive integer n to associate to

G an excursion to x/2 for BsL,h or BsL,u for which there is extreme behaviour
for sL ∈ x2

Z2−n covered by Lemma 3 or Corollary 4.
We will now make this specific.

Proof of Proposition 1. Suppose a x-component as above, G, has area less or
equal to x22−2N0 , where 2−N0 will be the ε in the statement of the proposition
and will be large but not depending on x. Choose in an arbitrary manner t
in G at which the value of the sheet equals x. For t, v1, v2 as above either

min
i

vi − ti � x22−N0 (4)

or
vi − ti � x22−N0 for i = 1, 2, but

W (s) = 0 for some s ∈ [t1, t1 + x22−N0 ]× [t2, t2 + x22−N0].
(5)

To prove the proposition it will suffice to bound the expectation of the number
of G, t for which (5) is true and to bound the expectation of the number of
G, t for which (4) holds.

We first treat case (4). We split it up into

min(vi − ti) ∈ (x22−(n+1), x22−n] for n � N0.

We suppose without loss of generality that

v1 − t1 = min(vi − ti) ∈ (x22−(n+1), x22−n].

Let s = (s1, s2) be the “smallest” element of Z
2x22−(n+1) in the square

[t1, v1] × [t2, t2 + v1 − t1]. We claim that for Brownian motion Bs2,h there
must be some kind of large deviation associated with the excursion of Bs2,h

containing t1 (which excursion necessarily corresponds to a line segment con-
tained in G). Necessarily the time point (t1, s2) ∈ G and |W (t1, s2)−x| � x/8.
If for some s ∈ [t1, v1], |W (t1, s2) − W (s, s2)| > x/32, then the excursion
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of Bs2,h containing time point t1 is in A(x, n). Suppose on the contrary
that for all s ∈ [t1, v1], |W (t1, s2) − W (s, s2)| � x/32 and in particular
|W (t1, s2)−W (v1, s2)| � x/32.

In this case we have |W (t1, s2)−W (v1, s2)−W (t1, t2)+W (v1, t2)| � x/8−
x/32 > x/32 and the excursion of Bs2,h containing t1 makes a contribution
to Y s2(x, n) or to Xs2(x, n). By Lemma 3 and Corollary 4 we have that the
number of such excursions is bounded for any fixed s ∈ (x2/2n)Z by

2
1
x2

2n
(
κ e−c2

n

x
+ κ′ e−c

′2n

)
,

summing over n � N0 we obtain a bound � δ/(10x3) if N0 has been fixed
sufficiently large (independently of x).

Now consider (5). As before we let s = (s1, s2) be the smallest element of
2−(N0+1)x2

Z in [t1, t1 + 2−N0x2]× [t2, t2 + 2−N0x2].
Now, for all t ∈ [t2, t2 + 2−N0x2], we have (by the definition of v2)

that W (t1, t) � 7x/8 and � 9x/8. In particular W (t1, s2) = BsL,h(t1) ∈
[7x/8, 9x/8]. Thus, provided that for e the excursion of Bs2,h to x containing
time t1 it is the case that,

sup
0�p�q�2−N0x2 p, q∈e

∣∣Bs2,h(p)−Bs2,h(q)
∣∣ < x/8,

we have

6x
8

� Bs2,h(s) � 10x/8 for all s ∈
[
t1, t1 + x22−N0

]
.

So, if for some u = (u1, u2) ∈ [t1, t1 + x22−N0 ] × [t2, t2 + x22−N0 ] we have
W (u) = 0, then

W (u1, u2)−W (u1, s2)−W (t1, u2) + W (t1, s2)
� 0− 6x/8− 7x/8 + 9x/8 = −x/2.

Thus again we have for excursion e of Bs2 containing t1, that

sup
p,q∈e

|p−q|�x22−N0

sup
|t−s2|�x22−N0

|W (p, t)−W (p, s2)−W (q, t) + W (q, s2)| � x/2.

The expected number of such excursions again by Lemma 3 and Corollary 4
(and hence the expected number of bubbles of size � 2−2N0/x3) is bounded by

κ24N0

x2

(
e−κ2N0

x
+ e−κ2N0

)
<

δ

10x3

if N0 has been fixed sufficiently large. 
�
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Proof of Corollary 2.

E[# of x-bubbles]

� δ

x3
+ E

[
# of x-bubbles containing a square of side 2−N0x2

]

� δ

x3
+ E

[∣∣{t ∈ [0, 2]2 : |W | ∈ [0, 2x]
}∣∣]/2−2N0x4

� κ

x3
.

By the scaling properties of centred gaussian variables the process defined
on (s, t) ∈ [0, 1]2

Y (s, t) = ε−1/2W (εs, t)

is equal in law to W . Thus the expectation of the number of x/ε1/2-bubbles
attaining value x/ε1/2 in [0, 1]2 for process Y = expectation of the number of
x-bubbles of W attaining value x in [0, ε]× [0, 1]. But the former quantity is
bounded by

κ

(x/ε1/2)3
=

κε3

x3
� δ

10x3

for ε small. Thus by symmetry the expected number of x-bubbles attaining
value x in [0, ε]× [0, 1] ∪ [0, 1]× [0, ε] is bounded by δ/(5x3) if ε is small. 
�

Proof of Corollary 3. Given δ > 0, choose ε so small that the expected number
of x-bubbles attaining value x in [0, ε] × [0, 1] ∪ [0, 1] × [0, ε] is bounded by
δ/(x33). Also choose N0 sufficiently large that the expected number of x-
bubbles attaining value x in [0, 1]2 that do not contain a square of side x22−N0

with bottom-left vertex in [0, 1]2 where W = x is bounded by δ/(x33).
Now consider a bubble G which is not in the above two collections. By

definition G contains a square of side length x22−N0 and centre within [ε, 1]2.
Within this square is (at least) one point of x22−(N0+1)

Z. Thus every such
bubble G of diameter at least Mx2 contains a point s in x22−(N0+1)

Z, so that:
(i) 0 < W (s) < 2x;
(ii) s is not surrounded by a negative W circuit in

[
s1 −

Mx2

3
, s1 +

Mx2

3

]
×

[
s2 −

Mx2

3
, s2 +

Mx2

3

]
.

But by [K], proof of Theorem 1.1, page 269, the expected number of such
points is bounded by

2(x22−N0+1)−2 2x
ε

F (Mε)

where F (y) → 0 as y → ∞. The result follows by taking M so large that
F (Mε) < εδ/(22N03). 
�
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3 Section Three

In this section we wish to establish a weak convergence result on a bounded
functional of continuous functions from an interval [0,K]2 to the real line.
While this functional will not be continuous everywhere we will show that it
is a.s. continuous at sites chosen according to the difference of independant
Brownian motions process. The importance of this is that locally the Brownian
sheet resembles this process. This part of the paper relies heavily on the
Dalang–Walsh algorithm introduced in [DW2]. In this section and only this
section bubble will denote a component without spatial restriction.

We consider the expected number of x-bubbles of area greater or equal to
γx4/(t1t2) contained in

[
t1, t1 +

Kx2

t2

]
×

[
t2, t2 +

Kx2

t1

]

given that W (t1, t2) = cx, for x tending to zero. K will be large but fixed,
c fixed, t ∈ [ε, 1]2, ε > 0. Every thing in this section is a simple derivation
from ideas and results of [DW2].

We wish to show that as x tends to zero this tends to the expected number
of (size at least γ) 1-bubbles in [0,K]2 for a process X(s, t) = B(s) − B′(t)
where B, B′ are standard independent Brownian motions conditioned on
X(0, 0) = c.

There are various problems to address. Firstly, while it is trivial that,

V (s1, s2) =
1
x
W

([
t1 + x2 s1

t2
, t2 + x2 s2

t1

])∣∣∣
s∈[0,K]2

conditional on W (t1, t2) = cx tends to X(s)|s∈[0,K]2 conditional on X(0, 0) =
c, the two dimensional data functional F (ω) equal to the number of 1-bubbles
of area greater or equal to γ contained in [0,K]2 for ω need not be continuous.
It might be that as wn → w uniformly in [0,K]2, in the limit a single wn
bubbles splits into 2 distinct (necessarily touching) w bubbles. Equally it could
be that wn bubbles of area strictly less than γ converge to a w bubble of area
equal to γ. It could be that wn bubbles which are not contained in [0,K]2

“converge” to a ω-bubble entirely contained in [0,K]2 or that wn(1 − εn)
bubbles which are not wn 1-bubbles “converge” to a 1-bubble for path w.

The latter difficulties could be dealt with via a “smoothing” of our path
functional but the first is difficult: we do not know whether distinct positive
bubbles may touch for the Brownian sheet. Nevertheless we shall see that the
path functional for w chosen according to a law of X (conditional on X(0, 0))
is a.s. continuous at w.

In considering a component G of process X (now considered to be indexed
by (−∞,∞)2), [DW2] note that if the (a.s.) unique maximum of G occurs at
t = (t1, t2) then if we consider X(s, t2) = B(s)−B′(t2) for s in a neighborhood
of t1, we see that B must assume a local maximum at t1. We define (s1

1, s
1
2) to
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be the largest interval on which X(s1, t2) > 0. Necessarily B(s1
1) = B(s1

2) =
B′(t2) and (s1

1, s
1
2) is an excursion of B above value B′(t2).

Similarly we have that B′ has a local minimum at t2 and we have t2 ∈
[s2

1, s
2
2], an excursion of B′ below value B(t1). Let us call = {t1} × [s2

1, s
2
2] ∪

[s1
1, s

1
2]×{t2} the cross of G and let [s1

1, s
1
2]× [s2

1, s
2
2] be the rectangle generated

by G.

Lemma 4. A.s. every positive bubble G is such that a.s. for all β > 0 there
is a circuit surrounding the rectangle R generated by G which is within β > 0
of R and on which X < 0.

Proof. Let the (countable) values of the local minima of B′ be y1, y2, . . . , yi, . . .
With probability 1, for all i the excursions e of B above yi have the prop-
erty that if e = (e1, e2) then for all β > 0 there exist t1 ∈ (e1 − β, e1) and
t2 ∈ (e2, e2 + β) so that B(t1) < yi, B(t2) < yi.

Similarly for excursions e′ of B′ below local maxima x1, x2, . . . of B, we
have if e′ = (e′1, e′2) then a.s. for all β > 0, there exist t′1 ∈ (e′1 − β, e′1),
t′2 ∈ (e′2, e

′
2 + β) so that B′(t′1) > xi, B′(t′2) > xi.

Thus considering X = B − B′ for a cross C = [s1
1, s

1
2]× [s2

1, s
2
2] centred at

t = (t1, t2), we have for β small there exists gi1 ∈ (si1−β, si1), gi2 ∈ (si2, s
i
2 +β)

so that B(g1
1) < B′(t2), B(g1

2) < B′(t2), B′(g2
1) > B(t1), B′(g2

2) > B(t1).
Now B(t1) is the maximum value of B on [s1

1, s
1
2] and if β is small we will

have B(s) � B(t1) on [s1
1 − β, s1

2 + β] and so X(s, t) = B(s) − B′(t) will be
strictly negative on

[s1
1 − β, s1

2 + β]× {g2
1} and [s1

1 − β, s1
2 + β]× {g2

2}.

Similarly X will be strictly negative on

{g1
1} × [s2

1 − β, s2
2 + β] and {g1

2} × [s2
1 − β, s2

2 + β]

so we can take as our circuit
(
{g1

1} × [g2
1 , g

2
2 ]
)
∪
(
{g1

2} × [g2
1 , g

2
2]
)
∪
(
[g1

1 , g
1
2]× {g2

1}
)
∪
(
[g1

1 , g
1
2 ]× {g2

2}
)
. 
�

Lemma 5. For X restricted to a square S, any two distinct x bubbles are
a.s. non touching.

Proof. For simplicity we take the square to be [0, 1]2 and we consider two
distinct bubbles contained in this square. In general the restriction to [0, 1]2

means that the crosses may intersect ∂[0, 1]2, the boundary of [0, 1]2. But still
the proof of Lemma 4 applies to the parts of the cross contained in [0, 1]2.
Let the two x-bubbles be G1, G2. Let the crosses corresponding to Gi be Ci.
First C1 cannot cross C2 as this would mean that G1 and G2 are the same
component, nor can C1 and C2 touch as a moments thought rules out. If
the rectangles Ri generated by Gi are disjoint then Lemma 4 yields a circuit
separating R1, R2 on which X < 0 and so we must have that G1, G2 are
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a strictly positive distance apart. So we suppose neither of these. Now the
intervals (s11

1 , s11
2 ) and (s12

1 , s12
2 ) are excursions above a certain level. Thus

if these intervals overlap, it must be the case that one interval contains the
other. Similarly for (s21

1 , s21
2 ) and (s22

1 , s22
2 ). A moments thought convinces

that we must have either the intervals defining R1 contained in those defining
R2 or vice-versa, with strict inclusion (we are considering the case Ri do not
intersect ∂[0, 1]2). We suppose without loss of generality

(
s11
1 , s11

2

)
⊃

(
s12
1 , s12

2

)
and

(
s21
1 , s21

2

)
⊃

(
s22
1 , s22

2

)
.

In this case there is a circuit D surrounding C2 and disjoint from C1 on which
X < 0 by Lemma 4. Thus G2 ⊂ D is contained in the interior of D and hence
is a strictly positive distance from G1. The cases where s11

i = 0 or 1 are dealt
with similarly. Thus in considering x-bubbles on a square [0, 1]2 for process
X , we have a.s. (see the Remark after the statement of Proposition 1) that
there are only a finite number of x-bubbles G1, . . . , GR and associated with
each Gi is an exterior circuit Ci and interior circuits Cj , j ∈ I(i)1 so that
X < 0 on Ci, Cj , j ∈ I(i) and if X(t) > x for t inside Ci and outside Cj ,
j ∈ I(i), then t ∈ Gi. 
�

We wish to show:

Lemma 6. If ω : [0,m] → R is chosen according to the law of X, then for
a.e. ω if G1, G2, . . . , GR are the x-bubbles of ω of area at least γx4, and if
wn → ω in uniform norm, then, for all i, |Gi| �= γx4 (here | . | denotes area)
and for n large we have wn has precisely R x-bubbles Gn1 , . . . , G

n
R of area at

least γx4 so that:
(i) for all i, Gi ⊂ (0,m) ⇐⇒ Gni ⊂ (0,m);
(ii) for all i, |Gni | → |Gi|.

Proof. It is easy to see that a.s. no x-bubble has area exactly γx4, we leave
this to the reader. Let the (a.s. finite) x-bubbles of ω be G1, G2, . . . , Gr, r � R.
We can and will assume that m is equal to (1,1) and also the following:

(i) Ḡi ∩ ∂[0, 1]2 �= φ⇒ ω(t) > 0 for some t ∈ Ḡi ∩ ∂[0, 1]2;
(ii) Gi satisfy the circuit property above;
(iii) there exists σ > 0 so that ω has no bubbles having maximum value

in [x− σ, x + σ];
(iv) |{t : w(t) = 0}| = 0.
Obviously by compactness for n large wn < 0 on each circuit Ci. Also for

each i if we choose ti ∈ Gi with w(ti) � x + σ (σ as in (iii) above), then
wn(ti) � x + σ/2 for n large. Define (for n large) Gni to be the x-bubble of
wn containing ti. By the observation for circuits Ci, we have that for n large
these r-bubbles are distinct. We first establish that for n large there does not
exist a further distinct x-bubble Gnr+1. Suppose not. Taking a subsequence
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if required, we can assume that there exist tnr+1 for each n large so that
tnr+1 �⊂

⋃r
i=1 G

n
i and wn(tnr+1) � x.

If tr+1 is a limit point of the tnr+1, then w(tr+1) � x. And so by (iii)
tr+1 belongs to bubble Gi for some i. So there exists a path γi from ti to
tr+1 on which w > 0 implies that for n sufficiently large we have (by uniform
convergence):

(i) wn(s) > 0 on γi;
(ii) wn(s) > 0 on a neighbourhood of tr+1.
This implies that for infinitely many n we have tnr+1 ∈ Gni . This contra-

diction implies that for n large there are only r distinct bubbles for ωn.
By a similar argument it is clear that

lim sup |Gni | � |Gi|; it remains to show: lim sup |Gni | � |Gi|.

We assume not. Taking a subsequence if necessary we assume

∀n, |Gni | > |Gi|+ c, for some c > 0.

By property (iv) and uniform convergence we have that there exists h > 0 so
that for large n ∣∣{t : |wn(t)| < 3h}

∣∣ < c/3

and ∣∣ĥGi
∣∣ < |Gi|+ c/3.

where ĥGi = {t : d(t, Gi) � h}.
So we can find for all large n, tn1 ∈ Gni . So that

wn(tni ) � h and d(tni , Gi) � h.

Let t∞i be a limit point of the tni . Then w(t∞i ) � h > 0, t∞i /∈ Gi. But therefore
t∞i is in a x-bubble for path w of size at least h/2 distinct from Gi this yields
a contradiction in the usual way. 
�

From this and Prohorov’s theorem (see e.g. [EK]), we deduce:

Theorem 2. If Xn is a process on rectangle [0,m] ⊆ [0,M ]2 so that

Xn(0, 0) = xn −→ x

Xn(s, t) = Bn
1 (s) + Bn

2 (t) + V (s, t) + Xn(0, 0)

where

Bn
1 , Bn

2 are independent and Bn
1 , B

n
2

D−→ Brownian motions B1, B2

and
sup
s,t

|V (s, t)| pr−→ 0,
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then the distribution of the number of 1-bubbles of Xn on [0,m] which have
size at least γ and are contained in (0,m) converge to the distribution of
the corresponding number for the difference of Brownian motions process
X(s, t) = B1(s)−B2(t) + x.

Define gγ(x,m) to be this number we record some elementary results and
bounds for g.

Lemma 7. (1) gγ(c,m) is continuous in m for c, γ fixed.
(2) For c such that (|c| − 2)2 > m1 + m2,

gγ(c,m) � m1m2√
2πγ

exp
(
−(|c| − 2)2

2(m1 + m2)

)
.

We relate Theorem 2.1 to the Brownian sheet.

Lemma 8. Fix ε > 0. Let (as n → ∞) tn → t ∈ [ε, 1]2, xn → 0, mn
1 ,m

n
2 →

M , cn → c then the conditional expectation of the number of xn-bubbles
contained in

(tn, tn + x2(mn
1 /t

n
2 ,m

n
2/t

n
1 ))

of size � γx4
n/(t1t2) conditional on W (tn) = cnxn converges to gγ(c,m) as n

tends to infinity.

We also have:

Lemma 9. For all t ∈ [ε, 1]2, M , γ fixed and x small we have that the con-
ditional expectation of the number of x-bubbles contained in

(
t, t + (M/t2,M/t1)x2

)

of size � γ/(t1t2)x4 conditional on W (t)/x = K is bounded by

(cM2/γ) exp
(
−(K − 2)2/(5M)

)

for some c not depending on K, M .

4 Section Four

We wish to prove Theorem 1. It will be sufficient to show that for δ fixed
but arbitrarily small, we can write Nx as N ′x + N ′′x where for strictly positive
constant c(δ), N ′xx

3 − c(δ)L → 0 in probability and where N ′′x is a positive
random quantity of expectation bounded by Cδ/x3 where C depends neither
on x nor on δ.

Let us fix 0 < δ << 1. Now fix ε > 0 so that the expected number of
x-bubbles which attain value x within [0, ε]× [0, 1] ∪ [0, 1]× [0, ε] is less than
δ/(1010x3). By Corollary 2 such ε exists. Let m′ be such that the expected
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number of x-bubbles attaining value x within [0, 1]2 and of diameter > m′x2

is bounded by δ/(1010x3). Such m′ exists by Corollary 3. Let N0 be so large
that the expected number of x-bubbles that attain value x within [0, 1]2 and
do not contain a square of side x22−N0 with a vertex within [0, 1]2 is bounded
by δ/(1010x3). Let γ = δ2ε22−2N0/1010. Now choose m so large that

m′

m
<

δ3

1010
2−2N0ε3.

Fix K so that for c the constant of Lemma 9, (K − 2)2/5m > K/4,∑
r�0 c2

re−2rK/4 � δε2−2N0/(m21010).
Divide up [ε, 1]2 into a finite number of rectangles Ri, i ∈ I, with the

property that, for all i, Ri = [si, ti] satisfies

(ti)1
(si)1

(ti)2
(si)2

� 1 + γ.

We wish to show that as x → 0, the number of x-bubbles that intersect
boundary δRi has small expectation and that Nx(Ri) the number of x-bubbles
which are contained inside Ri is close to (up to terms of order δL(Ri))

∫

Ri

st dL(st)

in probability.
To economize on notation, we drop the i suffix and consider a rectangle R

contained inside [ε, 1]2.
Given x small, we divide up R = [x1, x2]× [y1, y2] into equal rectangles of

horizontal side equal to

inf
{
r : r >

mx2

y1
such that

(x2 − x1)
r

∈ Z

}

and similarly of vertical side

inf
{
r : r >

mx2

x1
such that

(y2 − y1)
r

∈ Z

}

Let the grid points be (ti, sj) i = 1, . . . , N , j = 1, . . . ,M , with

ti+1 − ti > 0 and constant in i, sj+1 − sj > 0 and constant in j.

Let ∆i,j , (i, j) ∈ [1, N ]× [1,M ], be the rectangle from the grid with left-
bottom vertex (ti, sj). Let rectangle ∆′i,j ⊆ ∆i,j have bottom left vertex equal
to (ti, sj) and have horizontal side length (s1/sj)(t2 − t1) and vertical side
length (t1/ti)(s2 − s1).

Let Xij be the number of x-bubbles contained in ∆′i,j , of size at least
γx4/tisj . By way of motivation for the introduction of the subrectangles ∆′i,j ,
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note that Theorem 2 may be applied to the conditional law of the Xij as x
tends to zero so that the conditional laws have the same distribution. Let XK

ij

be the number of x-bubbles contained in ∆′i,j if |W (ti, sj)| < Kx, and equal
to 0 otherwise.

Lemma 10. For K as fixed above and all x sufficiently small

E

[∑

ij

(Xij −XK
ij )

]
� δ

109x3
|R|

Proof. Let Zr, r = 0, 1, 2, . . . , be equal to
∑

i,j

Xi,jI|W (ti,sj)|∈[2rKx,2r+1Kx) ;

then, for x sufficiently small,

E[Zr] =
∑

i,j

E
[
XijI|W (ti,sj)|∈[2rKx,2r+1Kx)

]

=
∑

i,j

P
{
|W (ti, sj)| ∈ [2rKx, 2r+1Kx)

}

×E
[
Xij

∣∣ |W (ti, sj)| ∈ [2rKx, 2r+1Kx)
]

� 22N0m2
∑

i,j

K2rx
ε

e−(K2r−2)2/(5m)

� |R| c 2r22N0 e−K2r/4/(εx3).

Where for the penultimate inequality we used Lemma 9 and our choice of K.
Thus E[

∑∞
r=0 Zr] � δ|R|/(1010x3) by our choice of K. 
�

We have introduced a collection of squares ∆ij with side length of order
mx2. We will shortly consider

∑
ij X

K
ij , which after Lemma 10 is close to∑

ij Xij . We have to treat the remaining bubbles which achieve value x/2
within R. A priori, this number could be extremely large, in principle of order
|R|/x3. However, given Corollaries 2 and 3, we need only consider bubbles of
diameter bounded by m′x2 having area at least γx4. Given this we are dealing
with bubbles close to the edges of the grid, which is to say bubbles entirely
contained in a non-random set of very small Lebesgue measure. This is the
simple fact behind Lemma 11 below.

Let Z be equal to the number of x-bubbles, G, contained in R of diameter
� m′x2 and of area � 2−2N0x4 and so that there does not exist an (i, j) such
that G contributes to XK

i,j .

Lemma 11. E[Z] � 2δ
108|x|3 |R| for x small.
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Proof. By Lemma 10, it will suffice to consider bubbles that do not contribute
to Xi,j for any (i, j).

Let D = R/ ∪i,j ∆′i,j . Then if a bubble is not within ∆′i,j and is of di-
ameter less than m′x2, then it must be completely contained in Dm′x2

, the
m′x2 envelope of D. The Lebesgue measure of Dm′x2

is readily seen to be
bounded by

8
m′x2 + γmx2

mx2
|R| �

(
8γ +

8m′

m

)
< 2−2N0ε2δ2|R|/108

by our choice of m and γ. Now the expectation of
∫

Dm′x2
IW (t,s)∈(0,2x) ds dt

is bounded by (x/ε)|Dm′x2 | � 2−2N0δ2|R|x/108 since by our restriction to
(ε, 1]2 the density at any point of W (t) � 1/(2ε). Consequently the expecta-
tion of the number of such x-bubbles (necessarily of area at least 2−2N0x4) is
bounded by δ|R|/(108x3). 
�

Proposition 2. As x tends to zero,

x6E

[(∑
XK
ij − gγ

(
W (ti, sj)/x,m

)
I|W (ti,sj)|�Kx

)2
]
−→ 0.

Proof. Note that XK
ij and gγ(|W (ti, sj)|/x,m) are bounded. The expression

of interest is equal to

x6
∑

i,j

E
[(

XK
ij − gγ

(
W (ti, sj)/x,m

)
I|W (ti,sj)|�Kx

)2]

+x6
∑

i,j,k

E
[(

XK
ij − gγ

(
W (ti, sj)/x,m

)
I|W (ti,sj)|�Kx

)

×
(
XK
ik − gγ

(
W (ti, sk)/x,m

)
I|W (ti,sk)|�Kx

)]

+x6
∑

i,j,k

E
[(

XK
ij − gγ

(
W (ti, sj)/x,m

)
I|W (ti,sj)|�Kx

)

×
(
XK
kj − gγ

(
W (tk, sj)/x,m

)
I|W (tk,sj)|�Kx

)]

+x6
∑

i�=i′,j �=j′
E
[(

XK
ij − gγ

(
W (ti, sj)/x,m

)
I|W (ti,sj)|�Kx

)

×
(
XK
i′j′ − gγ

(
W (ti′ , sj′)/x,m

)
I|W (ti′ ,sj′ )|�Kx

)]

� Cx6 1
x4

x + C′x6
( 1
x2

)3

x

+x6
∑

i�=i′,j �=j′
E
[(

XK
ij − gγ

(
W (ti, sj)/x,m

)
I|W (ti,sj)|�Kx

)
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×
(
XK
i′j′ − gγ

(
W (ti′ , sj′)/x,m

)
I|W (ti′ ,sj′ )|�Kx

)]

� C′′x + C′′′ sup
i�=i′j �=j′

E
[(

XK
ij − gγ

(
W (ti, sj)/x,m

)
I|W (ti,sj)|�Kx

)

×
(
XK
i′j′ − gγ

(
W (ti′ , sj′)/x,m

)
I|W (t′i,s

′
j)|�Kx

)

∣∣∣ |W (ti, sj)| � Kx, |W (ti′ , sj′ )| � Kx
]

Thus it remains to prove that the last term on the right tends to zero. If i < i′,
j � j′, then we clearly have that XK

i′j′ is conditionally independent of XK
ij ,

W (ti, sj) given W (ti′ , sj′) and so the desired conclusion in this case follows
directly from 8. So we treat the case i < i′, j > j′ (the case i > i′, j < j′, is
the same).

We consider XK
i′j′ − gγ(W (ti′ , sj′),m)I|W (ti′ ,sj′ |�Kx. We condition on:

(i) The white noise in square [ti, ti+1]× [sj′ , sj′+1];
(ii) W (ti, sj) (necessarily � Kx in magnitude);
(iii) XK

ij .
Now notice that on [ti′ti′+1]× [sj′ , sj′+1]

W (t, s) = W (ti′ , sj′)
+W (t, sj′)−W (ti′ , sj′) (≡ B1(t))
+W (ti′ , s)−W (ti′ , sj′ ) (≡ B2(s))
+W (t, s)−W (t, sj′)−W (ti′ , s) + W (ti′ , sj′ ) ( ≡W3(s, t))

B1, B2, W3 are independent. (B1,W3) is in addition, independent of (i), (ii)
and (iii) above. B2(t) can be written as:

a) W (ti, s)−W (ti, sj′) +
b) W (ti+1, s)−W (ti+1, sj′)−W (ti, s) + W (ti, sj′) +
c) W (ti′ , s)−W (t1′ , sj′)−W (ti+1, s) + W (ti+1, sj′ )
Now these three processes are independent c) is independent of a) b) (i),

(ii) and (iii) ). b) is (with probability tending to one as x → 0) � |x|3/2 in
supremum norm while given (i), (ii), (iii) a) is converging in distribution to
a speed ti Brownian motion, independent of B1.

The result now follows by Theorem 2.1 and the boundedness of random
variables concerned. 
�

Proof of Theorem 1. Given Proposition 2 and Lemma 1, we have

x3
(∑

XK
ij − gγ(Wti,sj/x,m)

)
pr−→ 0,

x3
∑

gγ(W (ti, sj)/x,m)
pr−→ x1y1

∫

R

dL(u, v)
(∫ K

−K
gγ(x,m) dx

)
,

so x3
∑

XK
i,j

pr−→ x1y1

∫

R

dL(u, v)
(∫ K

−K
gγ(x,m) dx

)
.
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Now, recall that we subdivided [ε, 1]2 into disjoint rectangles Ri so we
reintroduce the suffixes i then

x3
∑

i

∑

j,l

(XK
lj )i

pr−→ c

∫

[ε,1]2
st dL(st) + δ′O

(∫

[0,1]

dL(st)
)

for some c > 0.
Now if X is equal to the number of x-bubbles contained in [0, 1]2 then

X −
∑
�

∑
(XK

ij )l counts the x-bubbles that

a) are of diameter > m′x2,
b) are of size � 2−2N0x4,
c) achieve value x in [0, ε]× [0, 1] or [0, 1]× [0, ε],
d) are contained in Ri for some i but not in X ′i, for any i,
e) intersect δRi for some i but are of area � 2−2N0x4 and diameter <

m′x2.
But we have shown that the expectation of bubbles satisfying a) → c)

is bounded by δ/x3, the expectation of bubbles satisfying d) � Cx3δ|Ri| �
Cδ/x3 for C not depending on x. Those bubbles satisfying e) have expectation
bounded by C(δ)M/x2 by an argument similar to that used in the proof of
Lemma 11. We are done by the arbitrariness of δ. 
�
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