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Summary. This paper deals with necessary and sufficient conditions for the super-
martingale property of a stochastic integral with respect to a local martingale. A
basic answer is due to Ansel and Stricker [1].

Recently, Schachermayer [3], and Kabanov and Stricker [2] have also dealt with
this problem requiring an integrability condition at arbitrary sequences of stopping
times (cf. (7)). The subject of this paper is how to improve these results by imposing
this integrability condition at a considerably smaller class of stopping times (cf. (3)).
As a result it turns out that it suffices to impose this integrability condition at the
time horizon and at one particular sequence of hitting times (cf. Theorem 2). By
means of a counterexample (cf. Section 1), it is shown that none of the two conditions
can be omitted. As a side result we give an application to mathematical finance (cf.
Section 3).
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Introduction

Let T > 0 be a fixed and finite time horizon and let (Ω,F ,P; (Ft)0�t�T ) be a
filtered probability space satisfying the usual conditions. In the sequel, every
stopping time under consideration is supposed to be [0, T ]∪{+∞}-valued and
(τn)∞n=0 always denotes a sequence of stopping times.

Let S be a local martingale and let H ∈ L(S), where L(S) denotes the
set of S-integrable, predictable processes. The purpose of the present paper
� Support by the Austrian Science Foundation (FWF) under the Wittgenstein-Preis

program Z36-MAT is gratefully acknowledged.
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is to discuss necessary and sufficient conditions so that the stochastic integral
X := H · S is a supermartingale. A familiar answer to this question is given
by a corollary to Proposition 3.3 of Ansel and Stricker [1].

Theorem 1. Let S be a local martingale and let H be an S-integrable, pre-
dictable process. The stochastic integral H ·S is a supermartingale iff (H ·S)−

is dominated by a martingale.

The necessity part is trivial. The proof of the converse is similar to the
proof of Corollaire 3.5 by Ansel and Stricker [1]. Moreover, the conditions of
Theorem 1 imply that the stochastic integral H · S is also a local martingale,
cf. Ansel and Stricker [1], Proposition 3.3.

The purpose of the present paper is to replace the existence of a dominating
martingale for (H ·S)− in Theorem 1 by an integrability condition and to give
alternative characterizations of the supermartingale property of the stochastic
integral H · S.

Let us briefly explain the basic idea behind our approach. In case X− =
(H ·S)− is uniformly bounded, Theorem 1 clearly implies the supermartingale
property of the stochastic integral X = H · S. This motivates the question
whether it is sufficient to presuppose that the sets {X = H ·S � −n} become
small as n → ∞ . For this purpose, define the sequence (σn)∞n=0 of hitting
times by

σ0 := 0 and σn := inf{0 � t � T : Xt � −n}, n � 1, (1)

and consider
lim
n→∞

E
[
X−σn

I{σn<∞}
]

= 0. (2)

Note that σn ↑ ∞ a.s. and thus our condition (2) is a special case of condition
(19) used by Schachermayer [3], Lemma 1. A detailed discussion on the relation
between our results and the results by Schachermayer [3], and Kabanov and
Stricker [2] can be found below, cf. Corollary 1, and in Section 2. In the sequel
we discuss the role of condition (2) in connection with the supermartingale
property of the stochastic integral X = H · S.

This paper contains the following results:
In Section 1, we present a counterexample showing that condition (2) alone

is not a sufficient condition for the supermartingale property of the stochastic
integral X = H · S. This counterexample even shows that condition (2) does
not imply the integrability of X−T .

Moreover, we supplement condition (2) with an integrability condition in
order to obtain a criterion for the supermartingale property of the stochastic
integral X = H ·S. We will present two versions of this criterion, the detailed
proofs being postponed to Section 2.

Theorem 2. Let S be a local martingale and let H be an S-integrable pre-
dictable process. Moreover, let (σn)∞n=0 be the sequence of hitting times ac-
cording to (1). The stochastic integral X = H · S is a supermartingale iff
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lim
n→∞

E
[
X−σn

I{σn<∞}
]

= 0 and E[X−T ] <∞. (3)

Note that in general none of the two conditions in (3) alone implies the
supermartingale property of the stochastic integral X = H · S. As mentioned
above, the counterexample in Section 1 yields that it is not possible to omit
the integrability of X−T . On the other hand, the well-known construction of
the so-called doubling strategy in mathematical finance shows that condition
(2) (first condition in (3)) cannot be omitted.

Corollary 1. Let S be a local martingale and let H be an S-integrable pre-
dictable process. The stochastic integral X = H · S is a supermartingale iff

lim
n→∞

E
[
X−σn

I{σn<∞}
]

= 0 and

lim
n→∞

E
[
X−τn

I{τn<∞}
]
<∞, whenever τn ↑ ∞ a.s.

(4)

Recent papers by Schachermayer [3], and by Kabanov and Stricker [2]
deal with a similar problem. Their results are implied by Theorem 2 and its
Corollary 1, whose conditions are slightly weaker than those of the results by
Schachermayer [3] and by Kabanov and Stricker [2]. The necessary tool for
proving these implications is the easy Lemma 2, cf. Section 4.

Finally, we give an interesting application to mathematical finance. It turns
out that the integrability of X−T in (3) can be omitted if Theorem 2 is applied
to the no-arbitrage problem. As a result we obtain that the existence of an
equivalent local martingale measure yields a broader class of arbitrage-free
wealth-processes than those considered in the usual theory.

Theorem 3. Let S be a local martingale. Then the set

X :=
{
X = H · S : H ∈ L(S) ∧ lim

n→∞
E
[
(H · S)−σn

I{σn<∞}
]

= 0
}

is free of arbitrage.

1 The Counterexample

The idea of the counterexample is based on Schachermayer [3], Section 3.
Define Ω := {0, 1}N×{0, 1}N and let B be the Borel sigma-algebra of Ω. By

abuse of notation we denote the components and the coordinate functions by
the same symbol, i.e. the elements of Ω are written as ω = ((ηn)∞n=1, (ξn)∞n=1).
Fix a finite time horizon T and let (tn)∞n=0 be a strictly increasing sequence
such that t0 = 0 and limn→∞ tn = T .

Let (an)∞n=0 and (bn)∞n=1 be two sequences of real numbers given by a0 :=
−(1 + ε), 0 < ε < 1, and
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an := −
√
n en, n � 1

bn := (−1)n en−1, n � 1.

Note that (an)∞n=0 is strictly decreasing to −∞ and that bn > an−1, for all
n � 1. Let P be a probability measure on (Ω,B) under which the random
variables ((ηn)∞n=1, (ξn)∞n=1) are independent and satisfy

P{ηn = 1} =
an−1 − an
bn − an

≈ 1− e−1,

P{ξn = 1} =
1

n + 1
=: pn.

For notational convenience we write

dn :=
an−1 − bn
an − bn

≈ e−1 as well as en =
n∏

j=1

dj ≈ e−n.

Similarily as in Schachermayer [3], we define the process (Stn)∞n=0 inductively
by St0 = 0 and

n � 1, Stn =






an if ξk = ηk = 0 for k < n, and ηn = 0,

bn if ξk = ηk = 0 for k < n, and ηn = 1,

Stn−1 otherwise.

By means of the Lemma of Borel and Cantelli,

∞∑

n=1

P{ξn = 1} = ∞

implies P{limn→∞ ξn = 1} = 1. Thus, the process (Stn )∞n=0 becomes al-
most surely eventually constant and we define the pointwise limit ST (ω) :=
limn→∞ Stn(ω).

It is easy to verify that the probabilities P{ηn = 1}, n � 1, are chosen
such that E[Stn |St0 , . . . , Stn−1 ] = Stn−1 , n � 1. Thus, the continuous time
process (St)0�t<∞ defined by St := Stn−1 on [tn−1, tn[ is a local martingale
with respect to its natural filtration.

Next, we show E[S−T ] = ∞ which implies that ST is not a supermartingale.
For this purpose we observe

∏n−1
j=1 (1− pj) = 1/n and

P{S−T = |an|} = P{ξk = ηk = 0, k < n; ξn = 1; ηn = 0}

=
n−1∏

j=1

(1 − pj)pnen ≈
1
n2

e−n.
(5)

In case n is even, we obviously have P{S−T = bn} = 0 since bn > 0. If n is odd,
we obtain
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P{S−T = |bn|} = P{ξk = ηk = 0, k < n; ηn = 1}

=
n−1∏

j=1

(1− pj)en−1(1− dn) ≈ 1
n

e−(n−1).
(6)

Combining (5) and (6) yields

E[S−T ] =
∞∑

n=1

|an|P{S−T = |an|}+
∞∑

n=1

|bn|P{S−T = |bn|}

≈
∞∑

n=1

1
n
√
n

+
∞∑

n=1

1
n

= ∞.

Finally, we show that limn→∞ E[S−σn
I{σn<∞}] = 0, where the sequence

(σn)∞n=0 is defined by σ0 := 0 and σn := inf{t � 0 : St � −n}, n � 1.
For this purpose define

kn := inf
{
k ∈ N : −

√
k ek � −n

}
, n � 1.

and observe that the sequence (kn)∞n=1 is increasing to +∞. Note that {∃k :
Stk � −n} = {Stkn

= akn}. Indeed, the existence of some k such that Stk �
−n implies that at least one element of the sequence a1, . . . , ak−1, ak, bk is
less than −n. This can only happen if Stkn

= akn . The reverse inclusion
{Stkn

= akn} ⊆ {∃k : Stk � −n} is obvious and therefore

P{σn <∞} = P{∃k : Stk � −n}
= P{Stkn

= akn} = P{ξk = ηk = 0, k < kn; ηkn = 0}

=
kn−1∏

j=1

(1 − pj)ekn ≈
1
kn

e−kn .

Hence, we obtain

lim
n→∞

E
[
S−σn

I{σn<∞}
]

� lim
n→∞

√
kn ekn P{σn <∞} = lim

n→∞

1√
kn

= 0.

Summing up, this example shows that the validity of condition (2) alone is
not a sufficient condition for the supermartingale property of the stochastic
integral H · S. 
�

2 Detailed Results

Let us begin with the proofs of Theorem 2 and Corollary 1. For the reader’s
convenience, we repeat the assertions here.
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Theorem 2. Let S be a local martingale and let H be an S-integrable pre-
dictable process. The stochastic integral X = H · S is a supermartingale iff

lim
n→∞

E
[
X−σn

I{σn<∞}
]

= 0 and E[X−T ] <∞. (3)

Proof. The necessity part is an immediate consequence of Theorem 1. Con-
cerning the sufficiency part, we proceed as follows: using similar arguments
as in Schachermayer [3], proof of Lemma 1, we obtain that the first condition
in (3) implies the local supermartingale property of X = H ·S. This together
with the integrability of X−T then implies the supermartingale property of
X = H · S.

Condition (3) implies the existence of a subsequence (σn)n∈N1 , N1 ⊆ N,
such that

lim
n∈N1

E
[
X−σn

I{σn<∞}
]

= 0.

Hence, limn∈N1E[X−σn
I{σn<∞} | Ft] = 0 in probability and thus there exists

another subsequence (σn)n∈N2 , N2 ⊆ N1, such that

lim
n∈N2

E
[
X−σn

I{σn<∞}
∣∣Ft

]
= 0 a.s.

We first verify the local supermartingale property of X along the lines of
Schachermayer [3], proof of Lemma 1. For this purpose observe that the first
condition in (3) implies for sufficiently large n that E[θn] < ∞, where θn :=
max(X−σn

I{σn<∞}, n), n ∈ N2. Since inf0�t�T Xt∧σn � −n on {σn = ∞} and
since inf0�t�T Xt∧σn � −XσnI{σn<∞} on {σn <∞}, we have Xσn � −θn a.s.,
n ∈ N2. By means of Theorem 1 we obtain that Xσn is a supermartingale,
n ∈ N2. Thus, we have −Xt∧σn � E[−XT∧σn | Ft] and therefore X−t∧σn

�
E[X−T∧σn

| Ft], n ∈ N2. In particular we obtain

X−t = lim
n∈N2

X−t∧σn

� lim
n∈N2

E[X−T∧σn
| Ft]

� E[X−T | Ft] + lim
n∈N2

E
[
X−σn

I{σn<∞}
∣∣Ft

]
= E[X−T | Ft] a.s..

Thus Xt � −X−t � −E[X−T | Ft] and by means of Theorem 1 we obtain that
X is a supermartingale. 
�

Corollary 1. Let S be a local martingale and let H be an S-integrable pre-
dictable process. The stochastic integral X = H · S is a supermartingale iff

lim
n→∞

E
[
X−σn

I{σn<∞}
]

= 0 and (4)

lim
n→∞

E
[
X−τn

I{τn<∞}
]
<∞, whenever τn ↑ ∞ a.s..

Proof. The necessity part is an immediate consequence of Theorem 1. The
converse is easy to verify by means of Lemma 2. 
�
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Now, it is clear that Lemma 1 in Schachermayer [3] is an immediate con-
sequence of Corollary 1. For the reader’s convenience, we repeat the result by
Schachermayer [3].

Lemma 1. Let S be a local martingale and let H be an S-integrable, pre-
dictable process. The stochastic integral X = H · S is a supermartingale iff

lim
n→∞

E
[
X−τn

I{τn<∞}
]

= 0, whenever τn ↑ ∞ a.s. (7)

By means of our counterexample, cf. Section 1, we obtain that in Schacher-
mayer [3], Lemma 1, it is not possible to replace the arbitrary sequences
(τn)∞n=0 of stopping times in condition (7) by the sequence (σn)∞n=0 of hitting
times defined in (1) without imposing further conditions.

In a recent paper, Kabanov and Stricker [2], Lemma 1, give an alternative
proof of the result by Schachermayer [3], isolating the second part of Schacher-
mayer’s original proof as an assertion about nonnegative local submartingales.
Similar to our Theorem 2, one can state and prove an assertion in the spirit
of Kabanov and Stricker [2] in the following way.

Theorem 4. Let Y be a nonnegative local submartingale. Then Y is a sub-
martingale iff

lim
n→∞

E
[
YσnI{σn<∞}

]
= 0 and E[YT ] <∞. (8)

3 Application to Finance

The aim of this section is to apply our results to mathematical finance. For
this purpose, we assume throughout this section that S is a d-dimensional
local martingale with S1 ≡ 1 and that H ∈ L(S) is an S-integrable and
predictable process.

Recall that a wealth-process X = H · S is said to satisfy the no-arbitrage
condition, if

X0 = 0 a.s., XT � 0 a.s. =⇒ XT = 0 a.s. (NA)

It is well-known that the supermartingale property of X = H ·S is a sufficient
condition for a wealth-process to be free of arbitrage. Theorem 1 implies that
the set

X̃ :=
{
X = H · S : H ∈ L(S) ∧ (H · S)− is dominated by a martingale

}

satisfies the NA-condition. Usually, one defines

Xa :=
{
X = H · S : H ∈ L(S) ∧H · S � −a a.s.

}
, a ∈ R,
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and thus the set
⋃
a∈R

Xa of wealth-processes uniformly bounded from below
is free of arbitrage, since

⋃
a∈R

Xa ⊆ X̃ . Define

X :=
{
X = H · S : H ∈ L(S) ∧ lim

n→∞
E
[
(H · S)−σn

I{σn<∞}
]

= 0
}

and observe that
⋃
a∈R

Xa is a proper subset of X . By means of our coun-
terexample, we even obtain that X̃ is a proper subset of X . Since Theorem 3
implies the no-arbitrage property for the set X , we obtain a broader class of
arbitrage-free wealth-processes than those which are considered in the usual
theory.

Theorem 3. Let S be a local martingale. Then X is free of arbitrage.

Proof. Let X = H · S be a wealth-process satisfying X0 = 0 a.s. and XT �
0 a.s.. Thus, we obviously have E[X−T ] < ∞ and by means of Theorem 2 we
obtain the supermartingale property of X = H ·S. Hence, E[XT ] � E[X0] = 0
implies XT = 0 a.s. and the assertion is verified. 
�

4 Appendix

This section contains an easy auxiliary lemma stating an integrability condi-
tion for nonnegative adapted processes with càdlàg paths. Using an argument
of Kabanov and Stricker [2], Lemma 1, we present a proof for the reader’s
convenience.

Lemma 2. Let Y be a nonnegative adapted process with càdlàg paths. Define

τn :=

{
T if there exists t � T such that Yt � n

∞ otherwise
(9)

and assume
lim
n→∞

E[YτnI{τn<∞}] <∞. (10)

Then E[YT ] <∞.

Proof. Condition (10) implies the existence of a subsequence (τn)n∈N1 , N1 ⊆
N, such that limn∈N1 E[YτnI{τn<∞}] <∞. Hence

E[YT ] � nP{τn = ∞}+ E
[
YτnI{τn<∞}

]
<∞,

for sufficiently large n ∈ N1 and the assertion is proved. 
�
Note that the counterexample in Section 1 yields that in Lemma 2 it is

not possible to replace the sequence of stopping times (τn)∞n=0 in condition
(9) by the sequence of hitting times (σn)∞n=0 defined in (1).
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