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Introduction

In [5], Carmona–Petit–Yor investigated asymptotic behaviour of the tail of
the distribution of the maximum of a diffusion process in a random Lévy
environment. This problem is a diffusion analogue of Afanas’ev [1] and a
generalization of Kawazu–Tanaka [11]. In this paper we attempt to complete
a result in [5].

Following [5], we consider (Xt; t � 0) and (ξt; t � 0) independent Lévy
processes starting from zero and admitting first moments such that −∞ �
E[X1] < 0 and −∞ � E[ξ1] < 0. Set

V (x) =
{

Xx if x � 0,
−ξ−x if x � 0,

as a random environment. Given a sample function V , let (Ξ(t, V ); t � 0) be
a diffusion process starting from zero with generator

1
2

e−V (x) d
dx

(
eV (x) d

dx

)
.

When V is considered to be random, the process (Ξ(t); t � 0) is called a
diffusion process in a random Lévy environment. Let P be the full probability
of Ξ. Since the scale function of Ξ( . , V ) is x �→

∫ x
0

e−V (y) dy, we have, for
x > 0,

P(x) := P
{

max
t�0

Ξ(t) > x
}

= E

[
A

A + Ax

]
, (1)

where
A =

∫ ∞

0

eξt dt and Ax =
∫ x

0

e−Xt dt.

We know that maxt�0 Ξ(t) is finite P almost surely because E[X1] and E[ξ1]
are in [−∞, 0). Our basic concern is to determine the rate of decay of P(x)
as x→∞.
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To state our results we need the following. The Laplace exponent φ of X
is defined by

E
[
eθXt

]
= e−tφ(θ), t � 0, θ ∈ R.

Denote by ψ the Laplace exponent of ξ. Our study in this paper was motivated
by the following result.

Theorem 0 (Carmona–Petit–Yor [5]). Assume that:

(a) φ is defined in a neighbourhood of 1;
(b) ψ is defined in a neighbourhood of 1, and ψ(1) > 0.

1) If φ′(1) > 0, then as x→∞,

P(x) ∼ e−xφ(1)φ′(1)ψ(1)−1.

2) If φ′(1) = 0 and φ′′(1) < 0, then

P(x) ∼ e−xφ(1)ψ(1)−1
√
|φ′′(1)|

/
2πx.

3) If φ′(1) < 0, then
P(x) = o(e−xφ(1)).

Since φ is concave, φ(1) > 0 if φ′(1) � 0. But it may occur that φ(1) � 0
if φ′(1) < 0. In fact we have a typical example Xt = Bt − αt where B is a
Brownian motion and 0 < α � 2−1. Namely, 3) of Theorem 0 does not always
tell us good information. One of our aims is to improve 3) of Theorem 0.

Now let us state our results. Each result below is proved under all (or
some) of the following conditions.

(c) There exists α ∈ (0, 1) such that φ is defined in a neighbourhood of α,
and φ′(α) = 0.

(d) ψ is defined in a neighbourhood of α, and ψ(α) > 0.
(e) X is not of the form Xt = bt + X̌t where b �= 0 and X̌ is a compound

Poisson process which takes values in rZ with some r > 0.

Our main result in this paper is

Theorem 1. Let the conditions (c), (d) and (e) be satisfied. Then as x→∞,

P(x) ∼ Cx−3/2 exp
(
−xφ(α)

)

with

C =
c1√

2π|φ′′(α)|

∫ ∞

0

∫ ∞

−∞
e−αxgλ(0)ḡλ(x) E

[
A e−λA

]
dxdλ ∈ (0,∞),

where

c1 = exp
(∫ ∞

0

(e−t − 1)t−1etφ(α)
P{Xt = 0} dt

)
,

and gλ(0) and ḡλ(x) are given by (5) in Section 3.
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The rate of decay in Theorem 1 is compatible with the previous works [1]
and [11]. This theorem is based on the following estimates.

Proposition 1 (Upper bound). Assume the conditions (c) and (d). Then
there exists C1 <∞ such that, for any x > 0,

P(x) � C1x
−3/2e−xφ(α).

Proposition 2 (Lower bound). Assume the conditions (c) and (e). Then
we have

lim inf
x→∞

exφ(α)x3/2P(x) � C > 0,

where C is as in Theorem 1.

We observe that (a) with φ′(1) < 0 implies (c), and that (b) implies (d).
Hence Proposition 1 is an extention of 3) of Theorem 0. If we consider the
natural environment, i.e., φ ≡ ψ, then (d) is not needed. The restriction similar
to (e) has already appeared in the discrete time case studied by Afanas’ev [1].
When the environment is made up of Brownian motions with negative drift,
we compute the precise value of C by the different manner from Kawazu–
Tanaka [11]. In Appendix, 1) and 2) of Theorem 0 will be considered.

1 Preliminaries

For the Lévy process X , we set Mt = sup0�s�tXs. Let σk be the first hitting
time of (−∞,−k], k � 0. That is,

σk = inf{t > 0 : Xt � −k}.

Quantities related to the dual process X̄ := −X are denoted by bars. For ex-
ample M̄ , σ̄0 and so forth. When (c) is satisfied, we define the new probability
P̂, called the Girsanov (or Esscher) transform of P, as follows:

P̂ = eαX(t)+tφ(α) · P on Ft := F(Xs : 0 � s � t).

This relation also holds if the fixed time t is replaced by an Ft stopping time
assumed finite under both P and P̂. Put γ = e−φ(α). Under P̂, the process X is
a Lévy process with Laplace exponent φ(·+ α)− φ(α). Denote by (τs; s � 0)
the right continuous inverse of a local time process of M − X at 0. Note
that local time is defined even if 0 is not regular for {0} as in Fristedt [9].
In this paper we select particular normalization factors in local times such
that − log E[e−τ1 ] = 1. Set Mτ(s) = ∞ if τs = ∞. For the subordinator
(Mτ(s); s � 0), we introduce

U(x) =
∫ ∞

0

P̂{Mτ(s) < x} ds, Ū(x) =
∫ ∞

0

P̂
{
M̄τ̄(s) < x

}
ds.
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That is, U is the left limit of the renewal function associated with the ladder
height process of the Lévy process with Laplace exponent φ(· + α) − φ(α),
and Ū is its dual. We define time homogeneous Markov processes Y and Ȳ
on (0,∞) whose transition functions are given by

Px{Yt ∈ dy} =
Ū(y)
Ū(x)

P̂x{Xt ∈ dy, σ0 > t}, x > 0,

Px

{
Ȳt ∈ dy

}
=

U(y)
U(x)

P̂x

{
X̄t ∈ dy, σ̄0 > t

}
, x > 0.

By the definition of P̂, Ê[X1] = −φ′(α) = 0 and 0 < Ê[X2
1 ] = −φ′′(α) <∞, so

that X oscillates under P̂. Hence Y and Ȳ are conservative, see e.g. [2, p. 184].
Let D[0, s] be the space of càdlàg functions on [0, s] endowed with Skorohod’s
topology.

We mention the classification of Lévy processes introduced in [10]. If X is
not linear, then X belongs to one of the following classes.

Class I. For any θ �= 0,
∣∣E[eiθX1 ]

∣∣ < 1.
Class II. The Lévy process X is expressed as Xt = bt+ X̌t where b �= 0 and

X̌ is a compound Poisson process which takes values in rZ with
some r > 0.

Class III. The Lévy process X is a compound Poisson process which takes
values in rZ with some r > 0.

If X is in Class II or III, r is the maximal span of the Lévy measure of X .
This classification can be derived from the Lévy–Khintchine formula of the
characteristic exponent of X . By this classification, (e) is satisfied if and only
if X does not belong to Class II, i.e., X is in either Class I or III. In this paper
we often assume that X is in Class I because similar arguments work for X
in Class III.

2 The Upper Bound

We assume the condition (c) up to Section 4. In this section we assume also the
condition (d). So we may choose β ∈ (α, 1) such that φ(β) > 0 and ψ(β) > 0.
We fix this β throughout this paper. The following lemma is very easy to
prove, but useful.

Lemma 1. Let φ(θ) (resp. ψ(θ)) be finite for some θ > 0. Then E[eθM1 ] <∞
(resp. E[eθξ1 ] <∞, where ξ1 = sup0�t�1 ξt).

Proof. Set a = θ/2 and b = 0 ∨ φ(a). Then (eaXt+bt; t � 0) is a positive
submartingale with respect to (Ft; t � 0). Since aM1 � sup0�t�1{aXt + bt},
by Doob’s L2 martingale inequality
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E
[
e2aM1

]
� E

[
sup

0�t�1
eaXt+bt

]2

� 4 E
[
e2aX1+2b

]
.

Thus E[eθM1 ] � 4 e[2b−φ(θ)]. The lemma is proved. 
�

Recall (1). Since A and At are independent,

P(t) = E[f(At)] where f(x) = E

[
A

A + x

]
. (2)

As for the function f(x), we have the following.

Lemma 2. There exists c2 <∞ such that f(x) � c2x
−β for x > 0.

Proof. By virtue of β ∈ (0, 1),

Aβ =
( ∞∑

n=0

∫ n+1

n

eξt dt
)β

�
∞∑

n=0

eβξn

(∫ n+1

n

eξt−ξn dt
)β

.

The process (ξt+n − ξn; t � 0) is independent of ξn, and have the same law
as (ξt; t � 0). Hence

E
[
Aβ

]
�
∞∑

n=0

E
[
eβξn

]
E

[(∫ 1

0

eξt dt
)β]

�
E
[
eβξ1

]

1− e−ψ(β)
<∞.

The last finiteness follows from Lemma 1. Using the above, we have

f(x) = E

[
A

A + x

]
� E

[(
A

A + x

)β]
� E

[
Aβ

]
x−β .

The proof of the lemma is complete. 
�

Lemma 3. It holds that

Ê

[
(1 + |X1|)

(∫ 1

0

e−Xt dt
)−β]

<∞.

Proof. Fix p ∈ (1, β−1), and let p−1 + q−1 = 1. By Hölder’s inequality,

Ê

[
(1 + |X1|)

(∫ 1

0

e−Xt dt
)−β]

� Ê

[(∫ 1

0

e−Xt dt
)−βp]1/p

Ê
[
(1 + |X1|)q

]1/q

The second term in the right hand side is finite because the Laplace transform
of X1 under P̂ exists in a neighbourhood of the origin. If T = inf{t > 0 : Xt >

1}, then
∫ 1

0 e−Xt dt � e−1(1 ∧ T ). Putting b = βp, we have
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Ê

[(∫ 1

0

e−Xt dt
)−b]

� Ê[eb; T > 1] + Ê[ebT−b; T � 1]

� eb
(
1 + Ê[T−b; T � 1]

)
.

It is enough to show that Ê[T−b; T � 1] < ∞. Applying the integration by
parts formula, we have

Ê[T−b; T � 1] = P̂{T � 1} − lim
t↓0

P̂{T � t}
tb

+ b

∫ 1

0

1
tb+1

P̂{T � t} dt.

To estimate P̂{T � t}, we use the fact {T � t} = {Mt � 1}. Observe that,
under P̂, X is a martingale with respect to (Ft; t � 0). Doob’s L2 martingale
inequality gives

Ê
[
M2
t

]
� 4Ê

[
X2
t

]
= 4 vt,

where v = Ê[X2
1 ]. By Chebyshev’s inequality and the above,

4 vt � Ê
[
M2
t ; Mt � 1

]
� P̂{Mt � 1} = P̂{T � t}.

Since b = βp < 1, the preceding relations allow us to get

Ê[T−b; T � 1] � 4 v
(

1 +
b

1− b

)
=

4 v
1− b

.

The proof of the lemma is complete. 
�

Under P̂, the discrete time processes (Xn; n � 0) and (X̄n; n � 0) are
random walks with mean zero and finite variance. In this context, we use the
following result given by Vatutin and Dyakonova [13].

Lemma 4. If (Sn; n � 0) is a random walk with E[S1] = 0 and 0 < E[S2
1 ] <

∞, there exists D <∞ such that, for any θ > 0, x � 0 and n ∈ N,

Ex[e−θSn ; S1, . . . , Sn � 0] � D
(1 + x)

(1− e−θ)2
n−3/2.

Lemma 5. There exists c3 <∞ such that, for any t > 0,

Ê

[
e−αXt

(∫ t

0

e−Xs ds
)−β]

� c3 t
−3/2.

Proof. Denote by Qt the left hand side above. The inequality
∫ t
0 e−Xs ds �

t e−Mt implies that, for any t ∈ (0, 1],

t3/2Qt � Ê
[
e−αXt+βMt

]
t3/2−β � γ−t E

[
eβMt

]
� γ−1

E
[
eβM1

]
.

The last term is finite by Lemma 1. We shall prove that supt>1 t
3/2Qt < ∞.

Let n ∈ N, and Zj = log
(∫ j+1

j
e−(Xs−Xj) ds

)
. Then we see
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∫ n+1

0

e−X(s) ds =
n∑

j=0

e−X(j)+Z(j) � e−X(ρ)+Z(ρ),

where ρ = min{k � n : Xk = min0�j�nXj}. Hence

Qn+1 �
n∑

j=0

Ê
[
e−αXn+1+β(Xj−Zj); ρ = j

]
=:

n∑

j=0

lj .

If 1 � j � n− 1, by the duality of the walk (Xk; 0 � k � n) and Lemma 4,

lj = Ê
[
e−(β−α)X̄j ; X̄1, . . . , X̄j > 0

]
Ê
[
e−αXn+1−j−βZ0 ; X1, . . . , Xn−j � 0

]

� d1j
−3/2 × γ−1

Ê
[
e−αXn−j−βZ0 ; X1, . . . , Xn−j � 0

]
,

with some d1 <∞. (In this proof di denotes a certain positive constant.) We
estimate the expectation in the last term. Using first the Markov property,
and then Lemma 4, we have that, if n � 2,

Ê
[
e−αXn−βZ0 ; X1, . . . , Xn � 0

]

= Ê

[
e−βZ01(X1�0)ÊX1

[
e−αXn−1 ; X1, . . . , Xn−1 � 0

]]

� d2 n
−3/2

Ê
[
e−βZ0(1 + |X1|)

]

= d3 n
−3/2.

Because of Lemma 3, d3 is finite. If n = 1, by Lemma 1, Ê[e−αX1−βZ0 ] �
γ−1

E[eβM1 ] <∞. Combining these estimates, we get

lj � d4 j
−3/2(n− j)−3/2 if 1 � j � n− 1.

The similar calculations show that

l0 = γ−1
Ê
[
e−αXn−βZ0 ; X1, . . . , Xn � 0

]
� d5 n

−3/2,

ln = Ê
[
e−(β−α)X̄n ; X̄1, . . . , X̄n > 0

]
Ê
[
e−αX1−βZ0

]
� d6 n

−3/2.

Therefore we have the following.

Qn+1 � d7 n
−3/2 + d8

n−1∑

j=1

j−3/2(n− j)−3/2

� d7 n
−3/2 + 2d8

[n/2]∑

j=1

j−3/2(n− j)−3/2

� d7 n
−3/2 + 2d8

(n
2

)−3/2 ∞∑

j=1

j−3/2

= d9 n
−3/2.
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Let t > 1, and n = [t]. Then we have

Qt � Ê

[
e−αXt

(∫ n

0

e−Xs ds
)−β]

= Ê
[
e−αXt−n

]
Qn

� γ−1d10 n
−3/2

� d11 t
−3/2.

This concludes the proof of the lemma. 
�

Recall (2). Using Lemma 2, the Girsanov transform and Lemma 5 in turn,
we get, for any t > 0,

P(t) � c2 E
[
A−βt

]
= c2γ

t
Ê

[
e−αXt

(∫ t

0

e−Xs ds
)−β]

� c2c3 γ
tt−3/2.

Proposition 1 is proved.

3 The Lower Bound

On Lemma 6, 8 and 9 below we assume that X is in Class I.

Lemma 6. If k > 0, then as t→∞

P{σk > t} ∼ c d eαkŪ(k)γtt−3/2,

where c =
∫∞
0 e−αxU(x) dx and d = c1

/√
2π|φ′′(α)|.

Proof. It is easy to see that γ−te−αk P{σk > t} = Êk[e−αXt ; σ0 > t]. Ac-
cording to [10, Lemma 1], the right hand side is of the order c d Ū(k)t−3/2 as
t→∞. The lemma is proved. 
�

Lemma 7. There exists c4 <∞ such that, for any t > 0, k > 0 and x > −k,

Px{σk > t} � c4eα(x+k)(1 + x + k)γtt−3/2.

Proof. We only have to show the lemma if t > 1. Put y = x + k and n = [t].
Then, by Lemma 4,

Px{σk > t} = Py{σ0 > t} � Py{X1 > 0, . . . , Xn > 0}
= γneαyÊy

[
e−αXn ; X1 > 0, . . . , Xn > 0

]

� const.γneαy(1 + y)n−3/2,

which shows the lemma. 
�
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Lemma 8. Let k > 0 and F : D[0, s] → R be continuous and bounded. Then
as t→∞,

E
[
F (Xu; u � s)F (X(t−u)−; u � s)

∣∣ σk > t
]

−→ Ek

[
F (Yu − k; u � s)

] 1
c

∫ ∞

0

dz e−αzU(z) Ez

[
F (Ȳu − k; u � s)

]
.

The preceding lemma can be derived from [10, Theorem 2]. Using Lemmas
6, 7 and 8, we get the following.

Lemma 9. If λ > 0 and k > 0, then

lim
t→∞

γ−tt3/2 E
[
e−λAt ; σk > t

]
= Jk(λ),

where Jk(λ) is equal to

d eαkŪ(k) Ek exp
(
−λ ek

∫ ∞

0

e−Ys ds
)

×
∫ ∞

0

dz e−αzU(z) Ez exp
(
−λ ek

∫ ∞

0

e−Ȳs ds
)
.

Proof. For the function F (ω) = exp
(
−λ

∫ s
0 e−ω(u) du

)
, ω ∈ D[0, s], we can use

Lemma 8. Applying Lemmas 6 and 8 with the function F , we have

lim
s→∞

lim
t→∞

γ−tt3/2 E

[
exp

(
−λ

∫

[0,s]∪[t−s,t]
e−Xu du

)
; σk > t

]
= Jk(λ).

Recall that At =
∫ t
0

e−Xu du. Then

0 � exp
(
−λ

∫

[0,s]∪[t−s,t]
e−Xu du

)
− exp(−λAt) � λ

∫ t−s

s

e−Xu du.

By these estimates, our lemma follows from

lim sup
s→∞

lim sup
t→∞

γ−tt3/2
∫ t−s

s

E
[
e−Xu ; σk > t

]
du = 0.

We show the above. Using Lemma 7, we see that, for any x > −k,

e−x Px{σk > t} � c4ek sup
z�0

{
(1 + z) e−(1−α)z

}
γtt−3/2

= const. ekγtt−3/2.

Applying first the Markov property, and then the inequality above, we have

E[e−Xu ; σk > t] = E
[
e−Xu PXu{σk > t− u}; σk > u

]

� const. e2kγt(t− u)−3/2u−3/2.
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Therefore
∫ t−s

s

E
[
e−Xu ; σk > t

]
du � const. e2kγt

∫ t−s

s

(t− u)−3/2u−3/2 du

= const. e2kγt
∫ t/2

s

(t− u)−3/2u−3/2 du

� const. e2kγtt−3/2s−1/2,

which shows the desired result. Hence we get the lemma. 
�

The positivity of Jk(λ), which we use in the proof of Proposition 2, follows
from the next lemma.

Lemma 10. For any x > 0,

Ex

[∫ ∞

0

e−Yt dt
]

and Ex

[∫ ∞

0

e−Ȳt dt
]

are not greater than 3 c1U(1)Ū(1).

Proof. We prove only the claim to Y . By Fubini’s theorem and the definition
of Y ,

Ū(x) Ex

[∫ ∞

0

e−Yt dt
]

= Êx

[∫ σ0

0

e−Xt Ū(Xt) dt
]
.

The right hand side is written as follows: see e.g. [2, p.176] or [10, Lemma 10].

Êx

[∫ σ0

0

e−Xt Ū(Xt) dt
]

= c1

∫ ∞

0

dV(y)
∫

[0,x)

dV̄(z) e−(x+y−z)Ū(x + y − z),

where V( · ) = U( ·+) and V̄( · ) = Ū( ·+). Using the inequality Ū(x) �
Ū(1)(x + 1) and the integration by parts formula, we have

∫

[0,x)

ezŪ(x + y − z) dV̄(z) � Ū(1)
∫

[0,x)

ez(x + y − z + 1) dV̄(z)

� Ū(1)Ū(x) ex(y + 1).

In the same way,

Êx

[∫ σ0

0

e−Xt Ū(Xt) dt
]

� c1Ū(1)Ū(x)
∫ ∞

0

e−y(y + 1) dV(y)

� c1Ū(1)Ū(x)U(1)
∫ ∞

0

e−yy(y + 1) dy

� 3 c1Ū(1)Ū(x)U(1).

This combined with the first equation in this proof shows our claim. 
�
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By Jensen’s inequality and Lemma 10, we observe that, for all λ > 0,

Jk(λ) � d eαkŪ(k) exp
(
−λ ek Ek

[∫ ∞

0

e−Ys ds
])

×
∫ ∞

0

dz e−αzU(z) exp
(
−λ ek Ez

[∫ ∞

0

e−Ȳs ds
])

� d eαkŪ(k)
∫ ∞

0

e−αzU(z) dz × exp
(
−6c1λ ekU(1)Ū(1)

)

> 0.

Obviously Jk(λ) is non-decreasing in k. Therefore there exists a positive limit
J∞(λ) := limk→∞ Jk(λ). Recall (2) and rewrite f(x) =

∫∞
0 e−xλE[A e−λA] dλ.

Then we have

P(t) �
∫ ∞

0

E
[
e−λAt ; σk > t

]
E
[
A e−λA

]
dλ.

Using first Lemma 9 with Fatou’s lemma, and then the monotone convergence
theorem in k, we get

lim inf
t→∞

γ−tt3/2P(t) �
∫ ∞

0

J∞(λ) E
[
A e−λA

]
dλ =: C > 0. (3)

The positivity of C comes from the fact that J∞(λ) > 0 and E[A e−λA] > 0 for
λ > 0. We investigate the structure of J∞(λ) (especially for the convenience
of Section 5). By the change of variable x = z − k, Jk(λ) is expressed as

Jk(λ) =
c1√

2π|φ′′(α)|
gλ.k(0)

∫ ∞

−k
e−αxḡλ.k(x) dx, (4)

where

gλ.k(x) = Ū(k + x) Ek+x

[
exp

(
−λ ek

∫ ∞

0

e−Ys ds
)]

, x > −k,

ḡλ.k(x) = U(k + x) Ek+x

[
exp

(
−λ ek

∫ ∞

0

e−Ȳs ds
)]

, x > −k.

Recalling the definition of Y , we see

gλ.k(x) = lim
t→∞

Ū(k + x) Ek+x

[
exp

(
−λ ek

∫ t

0

e−Ys ds
)]

= lim
t→∞

Êk+x

[
exp

(
−λ ek

∫ t

0

e−Xs ds
)
Ū(Xt); σ0 > t

]

= lim
t→∞

Êx

[
exp

(
−λ

∫ t

0

e−Xs ds
)
Ū(k + Xt); σk > t

]
.
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The expectation in the last term is non-decreasing in k, so is gλ.k(x). Hence
we can define the following limits for each x ∈ R and λ > 0.

gλ(x) := lim
k→∞

Ū(k + x) Ek+x

[
exp

(
−λ ek

∫ ∞

0

e−Ys ds
)]

,

ḡλ(x) := lim
k→∞

U(k + x) Ek+x

[
exp

(
−λ ek

∫ ∞

0

e−Ȳs ds
)]

.

(5)

Letting k →∞ in (4), by the monotone convergence theorem and (5), we have

J∞(λ) =
c1√

2π|φ′′(α)|
gλ(0)

∫ ∞

−∞
e−αxḡλ(x) dx. (6)

The combination of (3), (5) and (6) establishes Proposition 2.

4 Proof of Theorem 1

The results in the previous sections enable us to prove Theorem 1. Proposi-
tions 1 and 2 ensure 0 < C <∞, so that Theorem 1 follows from the estimate
lim supt→∞ γ−tt3/2P(t) � C. We show it. Recall (2). Since f(x) is decreasing,
for any δ > 0 and k > 0,

P(t) = E[f(At); σk > t− δ] + E[f(At); σk � t− δ]
� E[f(At−δ); σk > t− δ] + E[f(At); σk � t− δ]. (7)

Thanks to the expression f(x) =
∫∞
0 e−xλ E[A e−λA] dλ, for any s > 0,

E[f(As); σk > s] =
∫ ∞

0

E
[
e−λAs ; σk > s

]
E
[
A e−λA

]
dλ.

Plainly E[e−λAs ; σk > s] � P{σk > s} and
∫∞
0

E[A e−λA] dλ = 1. Thus, by
Lemmas 6 and 9 with the dominated convergence theorem,

lim
t→∞

γ−tt3/2 E[f(At−δ); σk > t− δ] = γ−δ
∫ ∞

0

Jk(λ) E
[
A e−λA

]
dλ. (8)

Using Lemma 2, we have

γ−t E[f(At); σk � t− δ] = Ê
[
e−αXtf(At); σk � t− δ

]

� c2Ê

[
e−αXt

(∫ t

0

e−Xs ds
)−β

; σk � t− δ

]

� c2Ê

[
e−αXt

(∫ t

σk

e−Xs ds
)−β

; σk � t− δ

]

� c2c3e−(β−α)k
Ê[(t− σk)−3/2; σk � t− δ]. (9)
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The last inequality comes from the strong Markov property conditioning on
Fσk

and Lemma 5. From the Girsanov transform P̂ on Fσk
,

P̂{t < σk � t + u} = E
[
eαX(σk)+σkφ(α); t < σk � t + u

]

� γ−(t+u)e−αk P{σk > t}
� c4γ

−u(1 + k)t−3/2.

In the last inequality we used Lemma 7. Let n = [t] and δ < 1. Applying the
estimate above in the first inequality below, we obtain

Ê[(t− σk)−3/2; σk � t− δ]

=
n−1∑

j=1

Ê
[
(t− σk)−3/2; j − 1 < σk � j

]
+ Ê

[
(t− σk)−3/2; n− 1 < σk � t− δ

]

� c5(1 + k)
(n−1∑

j=1

(n− j)−3/2j−3/2 + δ−3/2n−3/2

)

� c6(1 + k)δ−3/2n−3/2

� c7(1 + k)δ−3/2t−3/2.

Combining (9) with the above, we observe

lim sup
t→∞

γ−tt3/2 E[f(At); σk � t− δ] � c8δ
−3/2(1 + k) e−(β−α)k.

In view of (7), (8) and the preceding inequality, we get

lim sup
t→∞

γ−tt3/2P(t) � γ−δ
∫ ∞

0

Jk(λ) E
[
A e−λA

]
dλ + c8δ

−3/2(1 + k) e−(β−α)k.

Letting k → ∞, and then δ ↓ 0, we see that the right hand side above tends
to C (cf. (3)). This concludes the proof of the theorem.

5 The Drifted Brownian Case

In this section we compute the precise value of C in case of the drifted Brow-
nian environment. Let Xt = Bt − αt with 0 < α < 1 and ξt = Wt − bt
with b > α/2 where B and W are independent Brownian motions. It is easy
to see that the conditions (c)–(e) are fulfilled, and γ = e−α

2/2. Moreover X

and X̄ are Brownian motions under P̂, so that U(x) = Ū(x) =
√

2x (by our
normalization of local times) and gλ(x) = ḡλ(x). In particular Y and Ȳ are
three-dimensional Bessel processes. To determine gλ(x), we need the following.

Lemma 11. Let (Rt; t � 0) be a three-dimensional Bessel process. Then, for
any x > 0 and λ > 0,



On the maximum of a diffusion process in a random Lévy environment 229

Ex exp
(
−λ

∫ ∞

0

e−Rt dt
)

=
2
x

(
K0

(
2
√

2λ e−x/2
)
−

K0

(
2
√

2λ
)

I0
(
2
√

2λ
) I0

(
2
√

2λ e−x/2
))

,

where I0 and K0 are the modified Bessel functions with index 0 of the first
and third kind respectively.

Remark 1. In particular, letting x→ 0 with L’Hospital’s rule, we recover

E exp
(
−λ

∫ ∞

0

e−Rt dt
)

= −2
√

2λ
(

(K ′0I0 −K0I
′
0)
(
2
√

2λ
)

I0
(
2
√

2λ
)

)

=
1

I0
(
2
√

2λ
) .

In the second equality we used the Wronskian relation (K0I
′
0−K ′0I0)(y) = 1/y.

This formula is in agreement with Donati–Martin and Yor [7].

Proof of Lemma 11. According to the formula 2.10.1 in [4, p. 345], we have
that, if z � x,

Ex exp
(
−λ

∫ Tz

0

e−Rt dt
)

=
z S0

(
2
√

2λ e−x/2, 2
√

2λ
)

xS0

(
2
√

2λ e−z/2, 2
√

2λ
) ,

where Tz = inf{t � 0 : Rt = z} and S0(a, b) = I0(a)K0(b) − K0(a)I0(b).
Recall that I0(a) → 1 and K0(a) ∼ − log a as a → 0. Letting z → ∞ in the
equality above, we get the lemma. 
�

Since K0(a) → 0 and I0(a) → ∞ as a → ∞, by (5) and Lemma 11, we
have gλ(x) = 23/2K0(2

√
2λ e−x/2). Hence, by (6),

J∞(λ) =
25/2

√
π
K0

(
2
√

2λ
)∫ ∞

−∞
e−αyK0

(
2
√

2λ e−y/2
)

dy

=
27/2

√
π
K0

(
2
√

2λ
)∫ ∞

0

z2α−1K0

(
2
√

2λz
)

dz (10)

=
23/2−α
√
π

Γ (α)2λ−αK0

(
2
√

2λ
)
.

In the third equality we used the identity
∫∞
0 t2ν−1K0(t) dt = 4ν−1Γ (ν)2, ν >

0. The distribution of A is given by the following result due to Dufresne [8].
We also refer to Yor [14].

Lemma 12. For any κ > 0, we have
∫ ∞

0

dt exp
(
W (t)− κ

2
t
)

d=
2
Zκ

,
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where d= means equality in law and Zκ is a gamma variable of index κ, i.e.,

P{Zκ ∈ dt} =
tκ−1e−t

Γ (κ)
dt, t > 0.

By Lemma 12, A d= 2/Z2b. In other words

P{A ∈ dx} =
22b

Γ (2b)
x−(2b+1) e−2/x dx, x > 0.

Thus (3) and (10) combined with the above tell us that

C =
22b−α+3/2

√
π

× Γ (α)2

Γ (2b)

∫ ∞

0

∫ ∞

0

λ−αx−2be−(λx+2/x)K0(2
√

2λ) dxdλ.

If we use the identity

K0(z) =
∫ ∞

0

exp
(
−t− z2

4 t

)dt
2t

, z > 0,

the double integral in C is written as follows.
∫ ∞

0

∫ ∞

0

dxdt (2t)−1x−2be−(t+2/x)

∫ ∞

0

dλλ−αe−(x+2/t)λ

= Γ (1− α)
∫ ∞

0

dx
∫ ∞

0

dt (2t)−1x−2be−(t+2/x)(x + 2/t)α−1

=
Γ (1− α)
22b−α+1

∫ ∞

0

dy
∫ ∞

0

dt (1 + y)α−1(ty)2b−α−1e−(1+y)t (x = 2/ty)

=
1

22b−α+1
Γ (1− α)Γ (2b − α)

∫ ∞

0

y2b−α−1(1 + y)2α−2b−1 dy

=
1

22b−α+1
Γ (1− α)Γ (2b − α)B(1− α, 2b− α).

Consequently we get the following.

Proposition 3. Assume that Xt = Bt−αt with 0 < α < 1, and ξt = Wt− bt
with b > α/2. Then as x→∞,

P(x) ∼ Cx−3/2 exp(−xα2/2)

where

C =
(2π)3/2

1− cos(2πα)
× Γ (2b− α)2

Γ (2b)Γ (2b− 2α + 1)
.

When b = α, the same asymptotic was first obtained by Kawazu–Tanaka
[11], and also appears in Comtet–Monthus–Yor [6]. In [11], they say
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C =
25/2−2α

√
π Γ (2α)

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

x

x + y
y2α−1z2αe−(y/2+νx)u sinhu du dxdy dz,

where ν = (1 + z2)/2 + z coshu. We may check the equivalence of the two
expressions of C in case of b = α. To see it, we use the following.

2K0(x)K0(z) =
∫ ∞

0

exp
(
−v

2
− x2 + z2

2v

)
K0

(xz
v

)dv
v
, x, z > 0,

K0(y) =
∫ ∞

0

e−y coshu du = y

∫ ∞

0

e−y coshuu sinhu du, y > 0.

Go back to (10). These formulae and the change of variable v = 8λ/x imply

2−5/2
√
πJ∞(λ) =

∫ ∞

0

z2α−12K0(2
√

2λ)K0(2
√

2λz) dz

=
∫ ∞

0

z2α−1 dz
∫ ∞

0

exp
(
−v

2
− 8λ(1 + z2)

2v

)
K0

(8λz
v

)dv
v

=
∫ ∞

0

z2α−1 dz
∫ ∞

0

exp
(
−4λ

x
− x(1 + z2)

2

)
K0(xz)

dx
x

=
∫ ∞

0

∫ ∞

0

∫ ∞

0

z2α exp(−4λ/x− νx)u sinhu du dxdz.

Recall (3). Multiply the above by E[A e−λA], and integrate over (0,∞) in λ.
Then we may end the computations. Thus all that remains to show is the
following. Using the fact A

d= 2/Z2α by Lemma 12 and Fubini’s theorem, we
have
∫ ∞

0

e−4λ/x
E
[
A e−λA

]
dλ =

22α

Γ (2α)

∫ ∞

0

x

xw + 4
w−2αe−2/wdw

=
2−2α

Γ (2α)

∫ ∞

0

x

x + y
y2α−1e−y/2 dy (w = 4/y),

which shows the equivalence of C. Therefore, when b = α, Proposition 3
accords with Kawazu–Tanaka [11].

We point out the following. The proof of Kawazu–Tanaka [11] relies essen-
tially upon the formula of the joint distribution (eB(t),

∫ t
0 e2B(s) ds) for fixed

t > 0, which was given by Yor [15]. Needless to say, this formula is very useful.
However we cannot expect an analogous one if Brownian motion is replaced
by a Lévy process. One of our motivations was to get Proposition 3 without
such a formula. Such an attempt has been already done by Kotani [12] with
analytic methods. The function gλ(−x) = 23/2K0(2

√
2λex/2) is nothing but

gλ(−∞, x) appeared in [12] where gλ(x, y) is the Green function of 2−1e−x∆
on R and −∞ is the entrance boundary of the corresponding diffusion.
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6 Appendix

In this appendix we consider 1) and 2) of Theorem 0.

First point

We note that the condition φ′′(1) < 0 may be omitted from 2) of Theo-
rem 0. We show it under somewhat mild hypotheses. Suppose that |φ(1)| <∞,
φ′(1−) = 0 and−∞ � E[X1] < 0. By the hypothesis |φ(1)| <∞, for θ ∈ (0, 1),

e−φ(θ)
(
φ′(θ)2 − φ′′(θ)

)
= E

[
X2

1 eθX1
]
.

Since φ′(1−) = 0, letting θ ↑ 1, we obtain

−e−φ(1)φ′′(1−) = E
[
X2

1 eX1
]

� 0.

If φ′′(1−) = 0, the preceding relation yields that X1 = 0 almost surely, so
that E[X1] = 0. It is a contradiction. As a result φ′′(1−) < 0, which shows our
assertion because φ′(1−) = φ′(1) and φ′′(1−) = φ′′(1) under the condition (a).

Second point

The following result is an extension of iv) of Proposition 3.1 in [5]. This lemma
will be used in the proof of Proposition B in the third point.

Lemma A. If (ζt; t � 0) is a Lévy process satisfying E[ζ1] � 0, then

E

[∫ ∞

0

e−ζt dt
]−1

= E[ζ1].

Proof. Let E[ζ1] > 0. The strong law of large numbers states that
∫∞
0 e−ζs ds <

∞ almost surely. Set Ht = e−ζt/
∫∞
t

e−ζs ds, and define the shift operator
(θt; t � 0) such that ζs(θtω) = ζs+t(ω)− ζt(ω). Then

Ht(ω) =
(∫ ∞

0

eζt(ω)−ζs+t(ω) ds
)−1

=
(∫ ∞

0

e−ζs(θtω) ds
)−1

= H0(θtω).

The right derivative of − log
(∫∞
t

e−ζs ds
)

is Ht which is right continuous.
Thus, integrating Hs(ω) = H0(θsω) over [0, t], we have, for almost every ω,

log
(∫ ∞

0

e−ζs(ω) ds
)
− log

(∫ ∞

t

e−ζs(ω) ds
)

=
∫ t

0

H0(θsω) ds, ∀t > 0.

Divide both terms by t, and then take the limit as t→∞. The right (resp. left)
hand side converges to E[H0] (resp. E[ζ1]) by virtue of Birkhoff’s ergodic
theorem (resp. the strong law of large numbers). Accordingly we get

E[ζ1] = E[H0] = E

[∫ ∞

0

e−ζs ds
]−1

.

Let E[ζ1] = 0. Considering (ζt +µt; t � 0) with µ > 0, and then letting µ ↓ 0,
we have the desired result. 
�
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Remark 2. Lemma A was also discussed in Bertoin and Yor [3]. They studied
the close relation between the distributions of

∫∞
0 e−ζt dt and the semi-stable

Markov process obtained by Lamperti’s transform of ζ. See for details [3].

Third point

The following proposition leads to 1) and 2) of Theorem 0, and corresponds
to Afanas’ev [1].

Proposition B. Assume that φ(1) is finite, and ψ(1) > 0.

1) If φ′(1−) > 0, then as x→∞,

P(x) ∼ e−xφ(1)φ′(1−)ψ(1)−1.

2) If φ′(1−) = 0 and |φ′′(1−)| <∞, then

P(x) ∼ e−xφ(1)ψ(1)−1
√
|φ′′(1−)|

/
2πx.

We should pay attention to the difference of the conditions between Propo-
sition B and Theorem 0. We mention that the proof of 2) of Theorem 0 depends
on the finiteness of ψ(θ) for some θ > 1, see sect. 4.1. in [5]. Before proving
Proposition B, we remark the following. Owing to ψ(1) > 0, E[A] = ψ(1)−1

and xf(x) increases to E[A] as x ↑ ∞. As in Section 1, the Girsanov (or
Esscher) transform P̃ of P is defined by

P̃ = eXt+tφ(1) · P on Ft.

Then etφ(1)P(t) = Ẽ[e−Xtf(At)]. So the asymptotic of the last term is needed.

Proof. 1) Put Ct =
∫ t
0 eXs ds. Using the equivalence in law (Xs; 0 � s � t) d=

(Xt −X(t−s)−; 0 � s � t), we have

Ẽ
[
e−Xtf

(
At

)]
= Ẽ

[
e−Xtf(e−XtCt)

]

= Ẽ
[
e−XtCtf

(
e−XtCt

)
C−1
t

]
.

If t � 1, the integrand in the last term is less than E[A]C−1
1 . Using the

Girsanov transform P̃ and (Xs; 0 � s � 1) d= (X1 −X(1−s)−; 0 � s � 1), we
see

Ẽ
[
C−1

1

]
= eφ(1)

E
[
A−1

1

]
� eφ(1)

E
[
eM1

]
<∞.

The finiteness comes from Lemma 1. Note that limt→∞ e−XtCt = ∞ P̃-a.s.
because Ẽ[X1] = −φ′(1−) < 0. Hence, by the dominated convergence theorem,

lim
t→∞

Ẽ
[
e−Xtf(At)

]
= ψ(1)−1

Ẽ
[
C−1
∞

]
.

According to Lemma A, Ẽ[C−1
∞ ] = −Ẽ[X1] = φ′(1−). Thus 1) is proved.
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2) Since Ẽ[X1] = −φ′(1−) = 0, it was shown in the first point that
Ẽ[X2

1 ] = −φ′′(1−) > 0. Thus, if Ẽ[X2
1 ] = |φ′′(1−)| <∞, the following asymp-

totic holds: see [5, p.99].

Ẽ
[
e−XtA−1

t

]
∼

√
|φ′′(1−)|/2πt as t→∞.

By Lemma A, if k > 0, P̃(A∞ � k) � kẼ[A−1
∞ ] = kẼ[X1] = 0. Therefore

Ẽ
[
e−XtA−1

t ; At � k
]

� Ẽ
[
e−Xt(At −At/2)−1; At/2 � k

]

= Ẽ
[
e−Xt/2A−1

t/2

]
P̃{At/2 � k}

= o
(
t−1/2

)
.

Combining the results above, we get, for any fixed k � 0,

Ẽ
[
e−XtA−1

t ; At > k
]
∼

√
|φ′′(1−)|/2πt as t→∞.

Observe that xf(x) � E[A] for ∀x > 0, and that, for ∀ε > 0, ∃k > 0 such that
xf(x) � (E[A]− ε) for ∀x � k. Using these inequalities, we have

(
E[A]− ε

)
Ẽ
[
e−XtA−1

t ; At > k
]

� Ẽ
[
e−Xtf(At)

]
� E[A]Ẽ

[
e−XtA−1

t

]
.

The preceding relations show

Ẽ
[
e−Xtf(At)

]
∼ ψ(1)−1

√
|φ′′(1−)|/2πt as t→∞.

The proof of the proposition is complete. 
�
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