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1 Introduction

Ever since the publication of the paper by Black and Scholes (1973), the liter-
ature on options and derivatives has been expanding at an exponential rate.
There are by now many derivations of the famous Black–Scholes equation (1)
for the price of a European call option. However, all these derivations es-
sentially fall into two categories: the call replication method and the bond
replication method.

The call replication method has been given extensive and rigorous treat-
ment in the literature. The method originates with Merton, in his 1977 paper
on contingent claims and the Modigliani–Miller theorem (reproduced in Mer-
ton (1992)). A clear presentation of the argument can be found in Duffie
(2001). Another version of the call replication method is the martingale ap-
proach, pioneered by Harrison and Kreps (1979) (for a more recent description
of this approach, see Karatzas and Shreve (1998)).

On the other hand, the bond replication method is much less clearly un-
derstood, despite the fact that it was the original method adopted by Black
and Scholes (1973), and by Merton, in his 1973 paper on the theory of rational
option pricing (reproduced in Merton (1992)). In fact, as far as we know, all
the proofs that use the bond replication method run into the same problem,
which we shall explain below. In the present paper we show how to get around
this problem, and thus make the bond replication method rigorous.
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What is then the difference between the two methods?3 Suppose we are
in the Black–Scholes environment, with a stock S, a bond B, and an Eu-
ropean call option C (details of this environment will be given later). Then
the call replication method proceeds by attempting to “replicate” C, i.e., by
forming a portfolio Θ = αS + βB with the stock and the bond, which at
maturity has the same payoff as C. If we can find a replicating Θ which is
self-financing, then a simple arbitrage argument shows that the price of C at
any given time should equal that of Θ. Applying Itô’s formula, one finds that
the self-financing condition forces Θ to satisfy the Black–Scholes equation.
Hence, since the replicating condition determines Θ at the time of maturity,
Θ is uniquely determined as the solution to the Black–Scholes equation with
specified terminal data. One of the many virtues of the call price replication
method is that it works with minimal assumptions imposed on the call price
process C(t).

By contrast, the bond replication method requires us to make rather rigid
assumptions about C. In particular, we have to assume that C(t) = C

(
S(t), t

)

where C(s, t) is a reasonably bounded, differentiable function of s and t. In
addition, this method requires one to check that the portfolio involved in
the arbitrage argument is riskless as well as self-financing. More precisely,
the method proceeds as follows. One looks for a portfolio Π formed with
the stock and the call, which replicates the bond in the sense that it riskless
and self-financing, in which case it is said to be “hedging”. To fix ideas, let
Π = aS − bC. Assuming that we can find such a hedging portfolio Π , the
self-financing condition implies dΠ = a dS − b dC, which, together with the
riskless condition, leads to a = bCs. So we obtain Π = b(SCs − C). A simple
arbitrage argument shows that Π must earn interest at the riskless rate r,
hence dΠ = rΠ dt. Putting these together, one concludes, via Itô’s formula,
that C must satisfy the Black–Scholes PDE.

The difficulty we have with Black and Scholes (1973), as well as the rest
of the literature on the bond replication method, is that, as far as we can tell,
no one has bothered to check that there exists a non-vanishing choice of b for
which Π = b(SCs − C) is self-financing. Of course, if such a b fails to exist,
the whole strategy breaks down. There are in the literature proofs that such
a b exists when C satisfies the Black–Scholes equation, but these cannot be
used when what one is trying to show is that C is such a solution.

Resolution of the problem just raised is the main goal of the present note.
Namely, by carefully examining the requirement that Π = b(SCs−C) be self-
financing, we provide a rigorous derivation of the Black–Scholes formula along
the lines which Black and Scholes suggested originally. Our analysis has two
important ingredients. The first of these is the localization of the arguments
outlined above. That is, we show that a non-trivial, riskless, self-financing Π

3 There is a widely held belief in the mathematical finance community that the
two methods are essentially equivalent. To understand why we do not share this
belief, see the next to last paragraph of this introduction.
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can be constructed so long as SCs−C stays away from 0; and this leads to the
conclusion that, in order to avoid an arbitrage opportunity, C must satisfy the
Black–Scholes equation wherever sCs−C �= 0. This is the free boundary value
problem alluded to in the abstract. The second ingredient in our argument is
the proof that this free boundary value problem is trivial in the sense that
there is no boundary in the case under consideration. That is, we show that
for the type of terminal boundary data which arise here, any smooth function
which satisfies the Black–Scholes equation in the region where sCs − C �= 0
must satisfy the Black–Scholes equation everywhere. Thus, a posteriori, we
find that sCs − C is strictly positive everywhere4. Had we assumed from the
outset that C satisfied SCs−C > 0 everywhere, we could have removed most
of our difficulties. However, because we have no sound economic grounds for
making such an assumption, we were motivated to confront these difficulties
rather than assume them away.

Summarizing, what we show is that, with sufficient diligence, Black and
Scholes’ original bond replication method can be made to work. However,
the argument required is significantly more difficult and more rigid than the
one required by the call replication method. The reason we decided to carry
it through, aside from mathematical curiosity, was to fill what we found to
be a disturbing gap in the literature that has existed ever since the publi-
cation of [1]. Since many mathematical finance textbooks employ the bond
replication method (see for example the influential textbooks of Hull (1997),
Ingersoll (1987), or Wilmott et al. (1995)), we feel that our paper provides a
useful reference in this area.

One may still wonder if the call replication and bond replication methods
are not actually equivalent, perhaps after using some clever transformation.
We argue that they are not. To see why, recall briefly how the two methods
work. In the call replication, one constructs a portfolio Θ = αS + βB that
replicates the payoff of C at maturity. In the bond replication, one constructs
a portfolio Π = aS−bC that is self-financing and riskless. Both proofs proceed
by showing that if C does not satisfy Black–Scholes, then one would be able
to construct an arbitrage using Θ or Π , respectively. Now one may hope that
there is some correspondence between the pairs of coefficients (α, β) and (a, b).
However, even a summary inspection shows that this is not possible: while α
and β depend only on the value of C at maturity, a and b depend on C at each
intermediate time. Since we do not know yet that C satisfies Black–Scholes
(so in principle it can be anything), such a correspondence cannot exist.

The structure of this note is as follows: Section 2 contains definitions as
well as a proposition which shows that in the absence of arbitrage the value
of a self-financing, riskless portfolio must grow at the interest rate. Section 3
contains the statement of the main theorem and an outline of the proof.
4 It is interesting that Black and Scholes also made this observation in [1]. In their

notation, it translates into the statement that δ > 1, which means that the call
is always more volatile than the stock.
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Details of the proof are left for Section 4. Finally, in Section 5 we show how
to generalize our results to the cases when the drift is stochastic and volatility
depends on the stock price.

2 Hedging Portfolios and Arbitrage

We start by recalling the usual setup of continuous-time finance, as described
for example in Karatzas and Shreve (1998). Namely, we consider a market
in which the uncertainty is modeled by a probability space (Ω,F , P ) with a
non-decreasing filtration {Ft :∈ [0,∞)} of sub-σ-algebras, and a standard R

d-
valued Brownian motion (i.e., Wiener process)

(
W (t),Ft, P

)
. In this context,

an adapted process t �→ F (t) is a process such that F (t) is Ft-measurable
for each t � 0. An Itô processes is an adapted process t �→ X(t) for which
there exist adapted processes u : Ω × [0, T ] → R and v : Ω × [0, T ] → R

d,
with

∫ T
0 |u(t)| dt < ∞ and

∫ T
0 |v(t)|2 dt < ∞ almost surely, so that dX(t) =

u(t) dt + v(t) dW (t), in the sense of Itô calculus.
For i = 0, . . . , n, let Si(t) be the price process of asset i. In this paper

S0(t) = B(t) = exp
(∫ t

0
r(τ) dτ

)
is the price of a bond, which makes sure that

money always earns interest at rate r(t). Consider a portfolio Π for which
θi(t) represents the holdings of Si at time t, i.e., the number of units of i.
Assume that Si(t) is an Itô process defined on Ω× [0, T ], while θi(t) is an Itô
process on Ω× [0, T ) (θi(t) may be undefined at t = T , since no trading takes
place time T ). Then the value of the portfolio at time t is

Π(t) = θ(t)S(t) =
n∑

i=0

θi(t)Si(t).

We assume that trading occurs at times t and t + dt, but not in between.
That means that between t and t+dt the holdings θ stay constant. Therefore,
if there are no incoming or outgoing cashflows from the portfolio Π , its value
at t+dt must be Π(t+dt) = θ(t)S(t+dt). The intuition behind the notion of
“self-financing” portfolio is that, if trading occurs at t + dt, it has to be done
only with the available funds, i.e., such that θ(t+dt)S(t+dt) = θ(t)S(t+dt).
Using the formula X(t+dt) = X(t)+dX(t), it follows that “self-financing” is
the same as dθ(t)S(t + dt) = 0, or equivalently the same as dθS + dθ dS = 0.
(Note that, in contrast with ordinary calculus, dθ dS �= 0, since both θ and S
are stochastic). But now observe that dΠ = θdS + dθS + dθ dS = θdS. We
take this as the formal definition of “self-financing”.

Definition 2.1. A portfolio Π = θS is said to be self-financing if dΠ =
θ dS on Ω × [0, T ). More generally, given a pair of stopping times α and
β with 0 � α � β � T , a portfolio Π(t) = θ(t)S(t) is said to be locally
self-financing on the vertical window

V (α, β) ≡ {(ω, t) ∈ Ω × [0, T ] : α(ω) � t � β(ω)}
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if it is self-financing there in the sense that dΠ = θ dS on V (α, β), or more
precisely

Π(t ∧ β)−Π(t ∧ α) =
∫ t

0

1[α,β](τ)θ(τ) dS(τ).

It is important to realize that the notion of local self-financing is consistent
in the sense that if Π is locally self-financing on V (α, β) and if α � α′ �
β′ � β, then Π is locally self-financing on V (α′, β′). Indeed, this is just an
application of Doob’s Stopping Time Theorem which guarantees that Π(t ∧
β′)−Π(t ∧ α′) =

∫ t
0 1[α′,β′](τ) dΠ(τ) almost surely.

We now define the notion of riskless portfolio. Suppose Π is a portfolio
as above. By construction, Π is an Itô process, so dΠ = u dt + v dW . In the
literature, u is called the drift, and |v|2 is the variance.

Definition 2.2. We say that a portfolio Π with dΠ = u dt+v dW is riskless
if v ≡ 0. We say that Π is locally riskless on the vertical window V (α, β)
if v ≡ 0 almost surely on V (α, β).5

Definition 2.3. A portfolio is said to be hedging if it is self-financing and
riskless, and it is locally hedging on V (α, β) if it is locally self-financing and
locally riskless there.

We also have to clarify what we mean by “arbitrage”. Intuitively, an ar-
bitrage is an opportunity to start with zero wealth, incur at most bounded
debt, and end up with no losses, and, with non-zero probability, positive net
gains. More formally:

Definition 2.4. An arbitrage is a self-financing portfolio Π defined on
[0, T ], such that

a) Π(0) = 0;
b) ∃M > −∞, such that for each t, Π(ω, t) � M almost surely.
c) Π(T ) � 0 almost surely and Π(T ) > 0 with positive probability.

The next proposition shows that in the absence of arbitrage a self-financing
portfolio cannot do better than to earn interest at the rate r(t).

Proposition 2.5. Suppose the market admits no arbitrage and money earns
interest at rate r(t). Then, given stopping times α and β with 0 � α � β � T ,
there is no portfolio Π such that

– Π is locally self-financing and almost surely bounded on V (α, β);
– Π

(
ω, β

(
ω)

)
� exp

(∫ β(ω)

α(ω) r(τ) dτ
)
Π
(
ω, α

(
ω)

)
almost surely;

– The above inequality is strict with positive probability.
5 Equivalently, Π is locally riskless on V (α, β) if and only if, for almost every ω,

Π(ω, · ) is an absolutely continuous function on
[
α(ω), β(ω)

]
.
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Similarly, it is equally impossible for Π(t) to have the above properties when
the inequalities are reversed.

Proof. Suppose that Π were a portfolio of the sort described. To show that this
is impossible, we construct an arbitrage Q by the following trading strategy:
until time α don’t do anything; at time α, borrow money by short-selling
the bond B and buy Π from the market; at time β, sell Π and buy the bond
with the proceeds (and hold it until time T ). More precisely, define a portfolio
Q(t) = θ0(t)B(t) + θ(t)Π(t) as follows:

– For 0 � t < α, θ(t) = 0 and θ0(t) = 0.
– For α � t < β, θ(t) = 1 and θ0(t) = −Π(α)

B(α) .

– For β � t � T , θ(t) = 0 and θ0(t) = Π(β)
B(β) −

Π(α)
B(α) .

Since Π is locally self-financing and a.s. bounded on V (α, β), one can easily
verify that Q(t) is self-financing and a.s. bounded. In addition, Q(0) = 0, and,
from the hypothesis, Q(β) � 0 a.s. and Q(β) > 0 with positive probability.
But that implies that Q(T ) � 0 and Q(T ) > 0 with positive probability, and
so Q violates the no arbitrage assumption.

Proposition 2.6. Suppose the market admits no arbitrage and money earns
interest at rate r(t). Let Π be a portfolio given by dΠ = u dt + v dW , where
u(ω, · ) is continuous for almost every ω. Further, suppose that Π is locally
hedging and almost surely bounded on the vertical window V (α, β). Then, for
almost every ω, u(ω, t) = r(t)Π(t) for all t ∈

(
α(ω), β(ω)

)
. Equivalently, Π

must grow at exactly the interest rate r(t) during V (α, β), i.e., dΠ = rΠ dt
on V (α, β).

Proof. We need to show that P (Γ+) = 0 = P (Γ−), where Γ± ≡
{
ω :

±u(ω, t) > ±r(t)Π(ω, t)
}

. Thus, it suffices for us to show that for every ε > 0,
P
(
Γ+(ε)

)
= 0 = P

(
Γ−(ε)

)
, where Γ±(ε) ≡

{
ω : ±u(ω, t) > ±r(t)Π(ω, t)+ε

}
.

To this end, suppose P
(
Γ+(ε)

)
> 0 for some ε > 0. We can then define stop-

ping times α′(ω) and β′(ω) as follows: α′(ω) is the first t ∈
[
α(ω), β(ω)

]

for which u(ω, t) � r(t)Π(ω, t) + ε; β′(ω) is the first t ∈ [α′(ω), β(ω)] for
which u(ω, t) � r(t)Π(ω, t). (Here we mean that α′ = β if either α = β or
u < rΠ+ε for all t ∈ [α, β]. Similarly, β′ = β if either α′ = β or u > rΠ+ε for
all t ∈ [α′, β].) Then V (α′, β′) is a vertical window on which Π is uniformly
bounded and hedging. Furthermore, for ω ∈ Γ+(ε),

Π
(
ω, β′(ω)

)
> exp

(∫ β′(ω)

α′(ω)

r(t) dt
)
Π
(
ω, α′(ω)

)
,

which, by the preceding lemma, violates the no arbitrage assumption. Obvi-
ously, the same sort of argument rules out the possibility that P

(
Γ−(ε)

)
> 0

for any ε > 0.
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3 The Black–Scholes Formula

We restrict ourselves to a market where there is one risky asset with price
process S(t). As before, money earns interest at the rate r(t), which is a (non-
stochastic) function of t. In other words, we have a bond B with price at
t equal to B(t) = exp

(∫ t
0
r(τ) dτ

)
. The stock price is an Itô process which

satisfies the stochastic differential equation dS
S = µ dt + σ dW with S(0) > 0,

where σ : [0,∞) → (0,∞) and µ : [0,∞) → R are (non-stochastic) continuous
functions of t and W (t) is a standard 1-dimensional Brownian motion. Our
goal is to show how the absence of arbitrage determines how assets should be
priced if their price is a function of time t and the stock price S(t).

To be more precise, let C(t) be the price at t of a European call option on
S with maturity date T and strike price K > 0. Since K is fixed throughout
this paper, we omit the dependence of C on K. We assume that the call price
C at time t is a function of only t and the stock price S(t) at time t. That
is, C(t) = C

(
S(t), t

)
, where C(s, t) is a function of (s, t) ∈ (0,∞) × [0, T ].

From the definition of a call option, it follows that the value of C at the
maturity T is C(T ) =

(
S(T ) − K

)+, which, in terms of the variables (s, t),
means that C(s, T ) = (s−K)+ (here for λ ∈ R we use λ+ to denote the non-
negative part of λ, i.e., λ+ equals λ if λ � 0 or 0 otherwise). Following the
strategy of Black and Scholes (1973), we are going to show that, under some
regularity conditions on C as a function of (s, t), no arbitrage implies that
C(s, t) is uniquely determined by the terminal condition C(s, T ) = (s−K)+

and the Black–Scholes equation (1). In what follows, we use subscripts to
denote differentiation with respect to the variable in the subscript. Thus Ct
is the derivative of C with respect to t, etc.

Theorem 3.1. We assume that the price of the stock, S = S(ω, t), is an Itô
process satisfying

dS = S(µ dt + σ dW ) with S(0) > 0,

where µ and σ are bounded, non-stochastic functions of t, and σ is bounded
below by a strictly positive constant. In addition, we make the following as-
sumptions about the call price C = C(ω, t):

(i) C(ω, t) = C
(
S(ω, t, ), t

)
, where C : (0,∞) × [0, T ] → R is a function

which is continuous everywhere, and smooth on (0,∞)× [0, T );
(ii) lim t↗T C(s, t) = C(s, T ) ≡ (s−K)+ for all s ∈ (0,∞);
(iii) ∃M > 0 such that supt∈[0,T ) |C(s, t)| � Ms.

Then, if the market admits no arbitrage, the function C(s, t) must satisfy the
Black–Scholes equation on (0,∞)× [0, T )

Ct + σ2

2 s2Css + rsCs − rC = 0. (1)

Moreover, there is a unique solution of the Black–Scholes equation which sat-
isfies conditions (i)–(iii).
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Outline of Proof. Starting with a price process C which satisfies conditions
(i)–(iii), we want to show that condition of no arbitrage will be violated unless
C satisfies (1). The strategy which we would like to follow is Merton’s variant
of the argument given by Black and Scholes. That is, we would like to construct
a portfolio Π = aS − bC such that Π(0) > 0 and Π is hedging (i.e., self-
financing and riskless). If such a portfolio were to exist, we could take the
following steps to arrive at the desired conclusion:

• Because Π is self-financing, an application of Itô’s formula yields

dΠ = a dS − b dC = σ(a− bCs)S dW

+
(
µ(a− bCs)S − b

(
Ct + 1

2σ
2S2Css

))
dt. (2)

Hence, because (cf. Lemma 4.1) S > 0, Π is riskless if and only if a = bCs. In
other words, if Π is hedging, then Π = b(SCs − C).

• Proposition 2.6 says that if Π is hedging, the absence of arbitrage implies
that dΠ = rΠ dt. Solving for Π , we get

Π(0) exp
(∫ t

0

r(τ) dτ
)

= Π(t) = b(t)
(
SCs(t)− C(t)

)
, (3)

and so b cannot vanish.

• On the one hand, dΠ = rΠ dt = rb
(
SCs − C

)
dt. On the other hand,

from (2) and a = bCs, dΠ = b
(
Ct + σ2

2 S2Css
)

dt. Hence, since b does not
vanish, we know that

Ct
(
S(t), t

)
+

σ(t)2

2
S(t)2Css

(
S(t), t

)
+ rS(t)Cs

(
S(t), t

)
− rC

(
S(t), t

)
= 0.

By Lemma 4.1, this means that C satisfies the Black–Scholes equation.

As we mentioned in the introduction, the preceding strategy runs into
problems when one attempts to actually construct the hedging portfolio Π .
Specifically, if there exist a and b which make Π = aS − bC self-financing,
then, as we just saw, (3) must hold. But, because Π(0) > 0, this is possible
only if SCs −C �= 0. That is, if sCs −C = 0 for some (s, t) ∈ (0,∞)× [0, T ),
the preceding argument breaks down.

With this in mind, we modify the Black–Scholes–Merton strategy as fol-
lows. First, by localizing the argument just outlined, we are able to show
(Lemma 4.3) that if D(s, t) ≡ sCs(s, t) − C(s, t) �= 0 at some (s, t) ∈
(0,∞)× [0, T ), then C must satisfy the Black–Scholes equation at (s, t). Sec-
ond, we show (Lemma 4.4) that, if C satisfies equation (1) whenever D �= 0
and C(s, T ) = (s −K)+, then C satisfies (1) throughout (0,∞) × [0, T ). As
a bonus, this allows us a posteriori to conclude that D > 0 for all t < T
(Lemma 4.2). Uniqueness is proved in Lemma 4.2.

Because the details are somewhat technical, we have decided to put them
into a separate section. 
�
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4 Proof of theorem 3.1

From the outline given above, it is clear that Theorem 3.1 will be proved once
we have proved the following lemmas.

Lemma 4.1. There exists a unique Itô process X(t) satisfying dX = uX dt+
vX dW with initial condition X(0) > 0. X is given by the formula

X(t) = X(0) exp
(∫ t

0

(
u− 1

2v
2
)
(τ) dτ +

∫ t

0

u(τ) dW (τ)
)
. (4)

In particular, X(t) > 0 almost surely. Hence, if S(t) is the stock price process
described in Theorem 3.1, then for each t, S(t) > 0 almost surely. Further,
for any nonempty interval (s1, s2) ⊂ (0,∞), we have P

(
S(t) ∈ (s1, s2)

)
> 0.

Lemma 4.2. There exists a unique solution of the Black–Scholes equation
Ct+ σ2

2 s2Css+rsCs−rC = 0 satisfying conditions (i)–(iii) in Theorem (3.1).
Moreover, for this unique solution C, we have sCs − C > 0 everywhere in
(0,∞)× [0, T ).

Lemma 4.3. If C satisfies conditions (i)–(iii) in Theorem (3.1), and the
market admits no arbitrage, then C satisfies the Black–Scholes equation (1)
on the subset of (0,∞)× [0, T ) where sCs − C �= 0.

Lemma 4.4. If C satisfies conditions (i)–(iii) in Theorem (3.1), and if the
Black–Scholes equation (1) holds on the subset of (0,∞)× [0, T ) where sCs−
C �= 0, then (1) holds on the whole set (0,∞)× [0, T ).

Proof of Lemma 4.1. The first result is quite standard in the theory of stochas-
tic differential equations. Indeed, let Y (t) denote the right hand side of (4),
note that Y solves dY = uY dt + vY dW with Y (0) = X(0), and use Itô’s
Lemma to show that d

(
X
Y

)
= 0 for any solution X .

Both parts of the last assertion follow from the preceding. Namely, by (4),

S(t) = S(0) exp
(∫ t

0

(
µ(τ)− 1

2σ(τ)2
)

dτ +
∫ t

0

σ(τ) dW (τ)
)
.

Hence, since σ and r are non-stochastic, the distribution of S(t) is the same
as the distribution of S(0)M(t)eΣ(t)G, where

M(t) ≡ exp
(∫ t

0

(
µ(τ) − 1

2σ(τ)2
)

dτ
)
, Σ(t) ≡

√∫ t

0

σ(τ)2 dτ ,

and G is a standard normal random variable. Since for any non-empty open
interval I we have P (G ∈ I) > 0, the desired conclusion follows. 
�



408 Ioanid Rosu and Dan Stroock

Proof of Lemma 4.2. For technical reasons, it is preferable to make a change
of variables and define

u(x, t) = e−xC(ex, t) for (x, t) ∈ R× [0, T ].

With this change, we can calculate: ut(x, t) = e−xCt(ex, t), ux(x, t) =
e−x

(
exCs(ex, t)− C(ex, t)

)
, and uxx(x, t) = e−x

(
e2xCss(ex, t) − exCs(ex, t) +

C(ex, t)
)
. It follows that C satisfies Ct + 1

2σ
2s2Css + rsCs − rC = 0 on

(0,∞)× [0, T ) if and only if u satisfies

ut + σ2

2 uxx + ρux = 0, where ρ(t) = r(t) + σ2(t)
2 .

The correspondence is given by s = ex. Also, observe that conditions (i) and
(iii) translate into the conditions that u : R×[0, T ] is bounded and continuous,
and is smooth on R × [0, T ). Finally, the terminal condition (ii) becomes
u(x, T ) = (1 − Ke−x)+. Hence, the verification of existence and uniqueness
comes down to checking that there is precisely one bounded function u :
R× [0, T ] → R which is continuous everywhere, is smooth on R× [0, T ), and
satisfies

ut + σ2

2 uxx + ρux = 0 in R× [0, T ) with u(x, T ) =
(
1−Ke−x

)+
. (5)

To prove the preceding existence and uniqueness result, fix t0 ∈ [0, T ) and
define

Xt0(x, t) = x +
∫ t

0

ρ(t0 + τ) dτ +
∫ t

0

σ(t0 + τ) dW (τ).

If u satisfies (5), then an application of Itô’s formula shows that u
(
Xt0(t, x), t0

+ t
)

is a martingale for t ∈ [0, T − t0]. In particular, this means that

u(x, t0) = E
[
u
(
Xt0(x, T − t0), T

)]
.

But Xt0(x, T − t0)− x has the distribution of a normal random variable with
mean m(t0) ≡

∫ T
t0
ρ(τ) dτ and variance V (t0) ≡

∫ T
t0
σ2(τ) dτ . Hence, we have

now shown that if u solves (5), then

u(x, t) =
1√

2πV (t)

∫ ∞

logK

(
1−Ke−y

)
exp

(
−
(
y − x−m(t)

)2

2V (t)

)
dy, (6)

which gives the desired uniqueness. To prove existence, we need to show that
the right hand side of (6) has the required properties and solves (5). This is
an elementary exercise in calculus, and is left to the reader.

In addition, using (6) we can calculate

ux(x, t) =
K√

2πV (t)

∫ ∞

logK

e−y exp

(
−
(
y − x−m(t)

)2

2V (t)

)
dy,
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which implies that ux > 0 on R×[0, T ). But we know that sCs(s, t)−C(s, t) =
exCs(ex, t)− C(ex, t) = exux(x, t). This shows sCs − C is strictly positive on
(0,∞)× [0, T ) when C is the unique solution to (1) satisfying (i)–(iii). 
�

Proof of Lemma 4.3. Define

D(s, t) = sCs(s, t)− C(s, t).

Also, if V (α, β) is a vertical window as in Definition 2.1, define its interior by

intV (α, β) =
{

(ω, t) : α(ω) < t < β(ω)
}
.

We need to show that C satisfies (1) as long as D �= 0. Thus, assume that
D(s0, t0) �= 0 at some (s0, t0) ∈ (0,∞) × [0, T ). In order to show that C
satisfies (1) at (s0, t0), we work by contradiction. Therefore, suppose

D(s0, t0) �= 0 and (Ct + 1
2σ

2s2Css + rsCs − rC)(s0, t0) �= 0. (7)

On the basis of this assumption, we will construct a portfolio Π = aS − bC
and a vertical window V (α, β) in such a way that the following are true: Π
is hedging and uniformly bounded on V (α, β); α < β with strictly positive
probability; and either dΠ < rΠ dt for all (ω, t) ∈ intV (α, β), or dΠ > rΠ dt
for all (ω, t) ∈ intV (α, β). Hence, in either case, Proposition 2.5 says that the
no arbitrage condition is violated, thus producing a contradiction.

To see how this is done, suppose that (7) holds, and choose a ρ > 0,
which is strictly smaller than both t0+T

2 and s0
2 so that for all (s, t) ∈ R ≡

[s0 − ρ, s0 + ρ]× [t0, t0 + ρ] we have

|D(s, t)| � |D(s0, t0)|
2

(8)

and

∣∣(Ct + 1
2σ

2s2Css + rsCs − rC)(s, t)
∣∣

�
∣∣(Ct + 1

2σ
2s2Css + rsCs − rC)(s0, t0)

∣∣
2

. (9)

(Notice that ρ is chosen so that R ⊂ R× [0, T ).) Next, define the Itô process
b = b(ω, t) as the solution to

db = 1R b

(
σ2S4C2

ss dt
D2

− S dCs + σ2S2Css dt
D

)
, (10)

with b(0) = 1. Here 1R(ω, t) = 1R
(
S(ω, t), t

)
is given by the characteristic

function of R ⊂ (0,∞) × [0, T ), i.e., 1R(s, t) equals 1 if (s, t) is in R, or is
0 otherwise. (In the preceding, it is implicitly assumed that the effect of 1R
vanishing dominates everything else. Thus db = 0 when

(
S(ω, t), t

)
/∈ R.) By

Lemma 4.1, b is strictly positive everywhere. Define also a = a(ω, t) by
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a = bCs. (11)

We claim that the portfolio Π = aS − bC is self-financing on intR, i.e.,
(
S(ω, t), t

)
∈ int(R) =⇒ dΠ = a dS − b dC. (12)

By Itô’s formula, (12) is equivalent to S da − C db + dS da − dC db = 0. To
check that this holds, use Itô’s lemma to calculate

dS db
b

= −σ2S3Css
D

dt and
dCs db

b
= −σ2S3C2

ss

D
dt. (13)

Because a = bCs, da = b dCs + Cs db + dCs db, and therefore S da−C db
b =

S dCs + D db
b + S dCs db

b . Using (10) and (13), it follows that whenever(
S(ω, t), t

)
∈ intR,

S da− C db
b

= −σ2S2Css dt. (14)

We now calculate dS da−dC db
b = dS dCs+(Cs dS−dC)db

b . Notice that by Itô’s
lemma, Cs dS − dC = −(Ct + 1

2Cssσ
2S2) dt, and dS dCs = σ2S2Css dt. This

implies that on intR we have

dS da− dC db
b

= σ2S2Css dt. (15)

Putting (14) and (15) together, we get that whenever
(
S(ω, t), t

)
∈ intR, we

have S da − C db + dS da − dC db = 0, and, as we already observed, this is
equivalent to (12).

To complete our program, we need to define the vertical window V (α, β)
on which to apply Proposition 2.5. According to Lemma 4.1, we know that
P
(
S(ω, t0) ∈ (s0 − ρ, s0 + ρ)

)
> 0, so we can choose M <∞ so that

P
(
b(ω, t) � M and

(
S(ω, t), t

)
∈ R for all t0 � t � t0 + ρ

)
> 0.

Now we define the stopping times α and β. First, set α ≡ t0. Second, if
b(t) � M and

(
S(t), t

)
∈ intR for all t ∈ [t0, t0 + ρ], then let β = t0 + ρ.

Otherwise define

β = inf{t � t0 : b(t) � M or
(
S(t), t

)
/∈ R}.

Then it is easy to see that P (β > α) > 0.
In order to see that we are now in a position to apply Proposition 2.5, first

observe that Π is locally hedging on V (α, β). Second, looking at the definition
of b, one sees that inequality (8) together with the definition of β guarantee
that Π is uniformly bounded on V (α, β). Finally, equation (2) and the fact
that a = bCs, we get

dΠ − rΠ dt = −(Ct + 1
2σ

2S2Css + rSCs − rC) dt.

Equation (9) implies that either dΠ > rΠ dt on intV (α, β), or dΠ < rΠ dt
on intV (α, β). But P (β > α) > 0, so this means that the last two hypotheses
of Proposition 2.5 are satisfied, and we have arrived at a contradiction. 
�
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Proof of Lemma 4.4. We turn now to the proof that, if C satisfies (i)–(iii) and
(1) holds on the subset of (0,∞)× [0, T ) for which sCs−C �= 0, then (1) holds
everywhere on the whole (0,∞)× [0, T ). Make a change of variables as in the
proof of Lemma 4.2. Then we have a function u(x, t) = e−xC(ex, t) defined on
R × [0, T ], which is continuous everywhere and smooth on R × [0, T ). When
t = T we also have u(x, T ) =

(
1−Ke−x

)+. Now suppose that

ut + σ2

2 uxx + ρux = 0 whenever ux �= 0. (16)

We need to show that u satisfies ut + σ2

2 uxx + ρux = 0 everywhere (not only
when ux �= 0).

To this end, define the following subsets of R× [0, T ):

G =
{

(x, t) : φ(x, t) ≡ ut + σ2

2 uxx + ρux �= 0
}

and F =
{

(x, t) : ux = 0
}
.

Clearly G is open and F is closed in R × [0, T ). From (16), we know that
G ⊆ F . This implies on G we have φ = ut (since ux = uxx = 0 on G); also
φx = 0 (since utx = uxt = 0 on G). Our goal is to show that G is the empty set.
We first prove the following lemma: If G contains a point P0 = (x0, τ), then
it contains the whole horizontal line Lτ = {(x, τ) | x ∈ R} passing through P0.
To see this, consider the largest interval I ⊂ G∩Lτ which contains P0. Since
G is open, I is an open interval. We want to show that it is the whole line.
If it is not, without loss of generality, we may assume that it has an infimum
m > −∞. But then m /∈ G, and so φ(m, τ) = 0. On the other hand, because
φx ≡ 0 on G, φ(x, τ) = φ(x0, τ) �= 0 for all x ∈ I. By the continuity of φ in
x, since m is the infimum of all x in I, it follows that φ(m, τ) = φ(x0, τ) �= 0.
But this is a contradiction, because we have also shown that φ(m, τ) = 0.

Now suppose by contradiction that G has horizontal lines that get closer
and closer to T . Then we know that u is constant along those lines (because
ux = 0 in G), and this would imply that u is constant on the horizontal LT
corresponding to t = T , which is false (since u(x, T ) =

(
1 − Ke−x

)+
is not

constant in x). Then it follows that either G = ∅, which is what we want,
or G ⊆ R × [0, t0) for some 0 < t0 < T . Assume the latter is true. By a
continuity argument of exactly the sort just given, we would then know that
u is constant on Lt0 . Also, by the definition of G, we know that u satisfies
ut + σ2

2 uxx + ρux = 0 for (x, t) ∈ R × [t0, T ). Summarizing, u would be
a bounded continuous function on R × [0, T ] which is smooth on R × [0, T ),
equal to

(
1−Ke−x

)+ at t = T , and satisfies ut+ σ2

2 uxx+ρux = 0 in R×[t0, T ).
But this is impossible. Indeed, by the argument used to prove Lemma 4.2, the
fact that u solves (5) in R× [t0, T ] means that u(x, t0) must be given by the
right hand side of (6) with t = t0. In particular, this means that u(x, t0) must
tend to 0 or 1 as x tends to −∞ or +∞, and therefore u( · , t0) is certainly
not constant. Hence G must be empty, and we are done. 
�
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5 Generalization

In order to minimize the number of technical difficulties, we have been re-
stricting our attention to situations in which the volatility σ and drift µ are
deterministic functions of t. The major advantage to doing so was that the
resulting stochastic differential equation for the price process S(t) was trivial
and the distribution of S(t) was an easy transformation of a Gaussian. How-
ever, it should be recognized that our basic results apply in considerably more
generality. In fact, we can prove the analog of Theorem 1 under the conditions
that

• The stock price S(t) satisfies a stochastic differential equation of the form

dS(t) = µ(t)S(t) dt + σ
(
S(t), t

)
S(t) dW (t),

where the drift µ(t) is any bounded, adapted process and the volatility σ is
a bounded, uniformly positive, smooth function on (0,∞) × [0, T ] with the
property that |sσs(s, t)| is uniformly bounded.

• The payoff function f is a non-negative, Lipschitz continuous function with
the property that s−1f(s) is bounded and non-decreasing and has a strictly
positive first derivative on a non-empty open interval.

The basic strategy of the proof in this generality is the same as in the
case which we have already treated, and, for the most part, the necessary
changes occur when we come to the verification of the results in Section 4.
The first place where one encounters a problem is in the verification that
P
(
S(t) ∈ (s1, s2)

)
> 0 for all t ∈ (0, T ] and 0 � s1 < s2. By Girsanov’s

theorem, it suffices to treat the case when µ(t) = σ(S(t),t)2

2 , in which case
S(t) = S(0)eX(t), where

dX(t) = σ
(
X(t)

)
dW (t) with X(0) = 1.

Thus, it suffices to check that, with positive probability, X(t) is in any given
non-empty open interval. There are two ways in which this can be done.
The more probabilistic approach is based on the Support Theorem (cf. [10]),
which says that, because σ > 0, X restricted to [0, T ] will, with positive
probability, stay in any tubular neighborhood of any path p ∈ C([0, T ]; R) with
p(0) = log S(0). A more analytic approach is to show that the distribution
of X(t) is given by g

(
logS(0), y, t

)
dy, where g is the minimal, non-negative

solution to

∂tg(x, y, t) = 1
2σ(ex, t)∂2

xg(x, y, t) with lim
t↘0

g( · , y, t) = δy,

and to then apply the strong minimum principle to conclude that g(x, y, t) > 0
for all (x, y, t) ∈ R× R× (0,∞).
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The questions about existence and uniqueness are best handled by consid-
ering u(x, t) = e−xC(ex, t), in which case the problems come down to showing
that there is one and only one bounded solution to

ut = 1
2auxx + bux

where a(x, t) = σ2
(
ex, t

)
and b(x, t) = r(t) + 1

2σ
2(ex, t). (17)

By the classical theory of parabolic PDEs (cf. [3]), our conditions on σ are
more than sufficient to guarantee that there is a bounded u ∈ C

(
R× [0, T ]; R

)

which equals f when t = T , is smooth in R × [0, T ) and satisfies (17) there.
Moreover, to prove uniqueness, set Σ(x, t) = σ

(
ex, t

)
and define Xt0 by

dXt0(x, t) = Σ
(
Xt0(x, t), t0 + t

)
dW (t) + b

(
Xt0(x, t), t0 + t

)
dt

Xt0(x, 0) = x.

Then, by an application of Itô’s Lemma, one sees that that

u(x, t0) = E
[
g
(
Xt0(x, T − t0)

)]
where g(x) ≡ e−xf(ex), (18)

which is more than enough to prove uniqueness.
In addition to proving uniqueness, (18) makes it easy to verify that (cf.

the conditions given above on f)

lim
x→−∞

u(x, t0) = lim
s↘0

s−1f(s) < lim
s→∞

s−1f(s) = lim
x→∞

u(x, t0),

and so we know that u( · , t0) cannot be constant for any t0 ∈ [0, T ).
Finally, it remains to check that sCs − C is positive in (0,∞) × [0, T ).

Equivalently, what we must show is that ux > 0 on R × [0, T ), and perhaps
the easiest way to do this is to use the representation in (18) again. Indeed,
as is well-known, although Xt0(x, t), for each x, is only defined up to a set of
probability 0, it is possible to choose x �→ Xt0(x, t) so that it is, almost surely,
continuously differentiable and

(Xt0)x(x, t) = 1 +
∫ t

0

Σx
(
Xt0(x, τ), t0 + τ

)
(Xt0)x(x, τ) dW (τ)

+
∫ t

0

bx
(
Xt0(x, τ), t0 + τ

)
(Xt0)x(x, τ) dτ.

In particular,

(Xt0)x(x, t) = exp
(∫ t

0

Σx
(
X(x, τ), t0 + τ

)
dW (τ)

+
∫ t

0

(
bx
(
X(x, τ), t0 + τ

)
− 1

2Σx
(
X(x, τ), t0 + τ

)2
)

dτ
)

> 0



414 Ioanid Rosu and Dan Stroock

almost surely, and, from (18), we have that

ux(x, t0) = E
[
f ′
(
Xt0(x, T − t0

)
(Xt0)x(x, T − t0)

]
,

But f ′ is strictly positive on some non-empty interval (α, β), and by the same
sort of reasoning as that alluded to above, P

(
Xt0(x, T − t0) ∈ (α, β)

)
> 0,

and we are done.

Acknowledgements

We thank Jiang Wang and members of the MIT Mathematical Finance Sem-
inar, as well as members of the MIT Statistics and Stochastics Seminar, for
helpful suggestions and comments.

References

1. Black, F., Scholes, M. (1973): The pricing of options and corporate liabilities,
Journal of Political Economy, 81, 637–654.

2. Duffie, D. (2001): Dynamic Asset Pricing Theory, 2nd edn. Princeton University
Press.

3. Friedman, A. (1965): Partial Differential Equations of the Parabolic Type. Pren-
tice Hall.

4. Harrison, J.M., Kreps, D.M. (1979): Martingales and arbitrage in multiperiod
securities markets. Journal of Economic Theory, 20, 381–408.

5. Hull, J.C. (1997): Options, Futures, and Other Derivatives, 3rd edn. Prentice
Hall.

6. Ingersoll, J.E. (1987): Theory of Financial Decision Making. Rowman & Little-
field.

7. Karatzas, I., Shreve, S.E. (1998): Methods of Mathematical Finance. Springer
Verlag.

8. Karatzas, I., S.E. Shreve, S.E. (1991): Brownian Motion and Stochastic Calculus,
2nd edn. Springer Verlag.

9. Merton, R.C. (1992): Continuous-Time Finance, Revised edn. Blackwell.
10. Stroock, D., Varadhan, S.R.S. (1970): On the support of diffusion processes with

applications to the strong maximum principle. Proc. 6th Berkeley Symposium
Math. Stat. and Prob., 3, 333–360.

11. Wilmott, P., Howison, S., Dewynne, J. (1995): The Mathematics of Financial
Derivatives: A Student Introduction. Cambridge University Press.


	1 Introduction
	2 Hedging Portfolios and Arbitrage
	3 The Black–Scholes Formula
	4 Proof of theorem 3.1
	5 Generalization
	References



