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Introduction

In [5], Carmona—Petit—Yor investigated asymptotic behaviour of the tail of
the distribution of the maximum of a diffusion process in a random Lévy
environment. This problem is a diffusion analogue of Afanas’ev [1] and a
generalization of Kawazu—Tanaka [11]. In this paper we attempt to complete
a result in [5].

Following [5], we consider (X¢; ¢ > 0) and (&; t > 0) independent Lévy
processes starting from zero and admitting first moments such that —oo <
E[X1] < 0 and —oco < E[&] < 0. Set

X, ifz>0,
Viw) = {—g_x if 2 <0,

as a random environment. Given a sample function V, let (£(¢,V); t > 0) be
a diffusion process starting from zero with generator

L v d eV d)

2 ¢ da \° dz/’
When V is considered to be random, the process (Z(t); t > 0) is called a
diffusion process in a random Lévy environment. Let P be the full probability
of Z. Since the scale function of Z(.,V) is & — fox e~V dy, we have, for
z >0,

P(zx) = ?{r&a&cE(t) > x} =E {ﬁ} ) (1)

where

A :/ est dt and A, :/ e~ Xt dt.
0 0

We know that max;>o =(t) is finite P almost surely because E[X;] and E[¢]
are in [—00,0). Our basic concern is to determine the rate of decay of P(x)
as x — 00.
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To state our results we need the following. The Laplace exponent ¢ of X
is defined by
]E[eext] = eftd’(e), t>0,0€R.

Denote by 9 the Laplace exponent of £&. Our study in this paper was motivated
by the following result.

Theorem 0 (Carmona—Petit—Yor [5]). Assume that:

(a) ¢ is defined in a neighbourhood of 1;
(b) ¥ is defined in a neighbourhood of 1, and (1) > 0.

1) If ¢'(1) > 0, then as x — oo,
P(x) ~e "D/ (1)yp(1) "
2) If ¢'(1) =0 and ¢"(1) <0, then

Px) ~ e "Weyp(1)71 /|¢" (1)] /27,

3) If ¢'(1) <0, then
P(z) = (e "*W),

Since ¢ is concave, ¢(1) > 0 if ¢'(1) > 0. But it may occur that ¢(1) < 0
if ¢'(1) < 0. In fact we have a typical example X; = B; — at where B is a
Brownian motion and 0 < a < 271, Namely, 3) of Theorem 0 does not always
tell us good information. One of our aims is to improve 3) of Theorem 0.

Now let us state our results. Each result below is proved under all (or
some) of the following conditions.

(¢) There exists a € (0,1) such that ¢ is defined in a neighbourhood of «,
and ¢' (o) = 0.

(d) v is defined in a neighbourhood of «, and ¥ (a) > 0.

(e) X is not of the form X; = bt + X; where b # 0 and X is a compound
Poisson process which takes values in rZ with some r > 0.

Our main result in this paper is
Theorem 1. Let the conditions (c), (d) and (e) be satisfied. Then as x — oo,
P(z) ~ Cz3/? exp(—z¢(a))

with

A(2)E[Ae ] dzd) € (0, 00),

STy RS
Vel @) Jo -
where

€1 = exp (/ (et — Dt LI P{X, = 0} dt),
0

and gx(0) and gx(x) are given by (5) in Section 3.
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The rate of decay in Theorem 1 is compatible with the previous works [1]
and [11]. This theorem is based on the following estimates.

Proposition 1 (Upper bound). Assume the conditions (c) and (d). Then
there exists C1 < oo such that, for any x > 0,

P(x) < Cra—3/2e=m0(@),

Proposition 2 (Lower bound). Assume the conditions (c¢) and (e). Then

we have
lim inf e**( @) 23/2P(z) > C > 0,

Tr—00

where C 1s as in Theorem 1.

We observe that (a) with ¢'(1) < 0 implies (c), and that (b) implies (d).
Hence Proposition 1 is an extention of 3) of Theorem 0. If we consider the
natural environment, i.e., ¢ = 1, then (d) is not needed. The restriction similar
to (e) has already appeared in the discrete time case studied by Afanas’ev [1].
When the environment is made up of Brownian motions with negative drift,
we compute the precise value of C' by the different manner from Kawazu—
Tanaka [11]. In Appendix, 1) and 2) of Theorem 0 will be considered.

1 Preliminaries

For the Lévy process X, we set M; = supg<,<; Xs. Let ox be the first hitting
time of (—oo, —k], k > 0. That is,

o =inf{t > 0: X, < —k}.

Quantities related to the dual process X := —X are denoted by bars. For ex-
ample M, 5y and so forth. When (c) is satisfied, we define the new probability
P, called the Girsanov (or Esscher) transform of P, as follows:

P =eXOH(0) . p on F = F(X,:0<s<t).

This relation also holds if the fixed time ¢ is replaced by an F; stopping time
assumed finite under both P and P. Put v = e %) Under IP’ the process X is
a Lévy process with Laplace exponent ¢(- + o) — ¢(«). Denote by (75; s > 0)
the right continuous inverse of a local time process of M — X at 0. Note
that local time is defined even if 0 is not regular for {0} as in Fristedt [9].
In this paper we select particular normalization factors in local times such
that —logE[e™™] = 1. Set M, = oo if 7, = oo. For the subordinator
(M+(s); s > 0), we introduce

U(z) = /000 P{MT(S) < z}ds, U(r) = /000 I@’{]\_{[f(s) <z}ds.
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That is, U is the left limit of the renewal function associated with the ladder
height process of the Lévy process with Laplace exponent ¢(- + o) — ¢(«),
and U is its dual. We define time homogeneous Markov processes Y and Y
on (0, 00) whose transition functions are given by

Uy) -
P.{Y; e dy} = %P,{Xt e dy, o¢ > t}, x>0,
_ Uy) ~ . —
P.{Y; € dy} _%Pz{)ﬁedy, oo > t}, x> 0.

By the definition of P, E[X,] = —¢/(a) = 0 and 0 < E[X?] = —¢/' (@) < o0, 50
that X oscillates under IP. Hence Y and Y are conservative, see e.g. [2, p. 184].
Let D[0, s] be the space of cadlag functions on [0, s] endowed with Skorohod’s
topology.

We mention the classification of Lévy processes introduced in [10]. If X is

not linear, then X belongs to one of the following classes.

Class I.  For any 6 # 0, |E[e"%1]] < 1.

Class II. The Lévy process X is expressed as Xy = bt+ X; where b # 0 and
X is a compound Poisson process which takes values in rZ with
some r > 0.

Class III. The Lévy process X is a compound Poisson process which takes
values in rZ with some r > 0.

If X is in Class II or III, r is the maximal span of the Lévy measure of X.
This classification can be derived from the Lévy—Khintchine formula of the
characteristic exponent of X. By this classification, (e) is satisfied if and only
if X does not belong to Class II, i.e., X is in either Class I or III. In this paper
we often assume that X is in Class I because similar arguments work for X
in Class III.

2 The Upper Bound

We assume the condition (c¢) up to Section 4. In this section we assume also the
condition (d). So we may choose § € (a, 1) such that ¢(5) > 0 and ¥(5) > 0.
We fix this B throughout this paper. The following lemma is very easy to
prove, but useful.

Lemma 1. Let ¢(0) (resp. 1(0)) be finite for some 6 > 0. Then E[efMi] < oo
(resp. E[e?41] < oo, where &, = SUPo<i<1 &t)-

Proof. Set a = 0/2 and b = 0V ¢(a). Then (e®*++P; ¢ > 0) is a positive
submartingale with respect to (F; t > 0). Since aM; < supgg,<q{aXs + bt},
by Doob’s L? martingale inequality
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2
E[e2aM1:| g ]E|: sup eaXt+bt:| g 4]E[G‘2axl+2b:|.
0<tL1

Thus E[e?M1] < 4¢=¢@)], The lemma is proved. 0

Recall (1). Since A and A; are independent,

PO =Blf(A)]  where  f(0)=E| 5], @)

As for the function f(z), we have the following.
Lemma 2. There exists ca < 0o such that f(x) < cox™” for x > 0.

Proof. By virtue of 8 € (0,1),

o0 n+1 8 o0 n+1 8
oo (S s S ([,
n=0"" n=0 n

The process (§44n — &n; t 2= 0) is independent of &,, and have the same law
as (&; t > 0). Hence

B[]

e’} 1 B
n=0

The last finiteness follows from Lemma 1. Using the above, we have

A A\
— < < E[AP]z=".
f(x) IE{A_HE]\]E <A+x> < E[A%]x
The proof of the lemma is complete. O

Lemma 3. It holds that

(1+ X1|)(/01 X1 dt)ﬁ] < .

Proof. Fix p € (1,571), and let p~! + ¢! = 1. By Holder’s inequality,

(1+1]X1]) (/01 e Xt dt)_ﬁ (/01 e Xt dt>_ﬁp

The second term in the right hand side is finite because the Laplace transform
of X; under P exists in a neighbourhood of the origin. If T = inf{¢t > 0 : X; >

1}, then fol e Xt dt > e (1 AT). Putting b = p, we have

E

1/p
E[(1+[X4))9] "

E <E
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1 —b
0

It is enough to show that I@[T‘b; T < 1] < co. Applying the integration by
parts formula, we have

E

<L(I+ETY T<)).

— R P{T <t} L R
b. - . RS
R[T ,Tgl]_IP’{Tgl}—ltllrgitb +b/0 S P{T < t}dt.

To estimate P{T < t}, we use the fact {T" < t} = {M; > 1}. Observe that,
under P, X is a martingale with respect to (F;; t > 0). Doob’s L? martingale
inequality gives

E[M?] < 4E[X}] = 4w,

where v = E[X?]. By Chebyshev’s inequality and the above,
dvt > E[MZ; My > 1] > P{M, > 1} = P{T < t}.

Since b = Op < 1, the preceding relations allow us to get

b 4v
BT T <1 <4o(1+—) = —.
o Jsaollt15) =15
The proof of the lemma is complete. O
Under P, the discrete time processes (Xn;n > 0) and (X,;n > 0) are
random walks with mean zero and finite variance. In this context, we use the
following result given by Vatutin and Dyakonova [13].

Lemma 4. If (S,; n > 0) is a random walk with E[S1] =0 and 0 < E[S?] <
00, there exists D < oo such that, for any 0 >0, x > 0 and n € N,

1
(1+z) n—3/2.

E.le % S,...,8, >0/ < D—~——""
[e s P11, ) ] (1_6_9)2

Lemma 5. There exists c3 < oo such that, for any t > 0,

t -8
e Xt (/ e s ds> ] <egt™3/2,
0

Proof. Denote by @Q; the left hand side above. The inequality fg e Xods >
te~Mt implies that, for any ¢ € (0, 1],

E

t3/2Qt < E[e—axﬁ‘ﬁ]\/ft]t?)/?—ﬂ < V_tIE[eBMt] < ’7_1 E[eﬁMl]_

The last term is finite by Lemma 1. We shall prove that sup;. t3/2Q, < 0.
Let n €N, and Z; = log(fjj+1 e (XemX5) ds). Then we see
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n+1 n
/ eXC) 45 = 3" e XDHEG) 3 o~ X(I+20),
0 s

where p = min{k < n: X} = minog;<n X;}. Hence

Qi <Y BlemoXmn P20 5 — j] = 31,

j=0 =0

If 1 < j < n—1, by the duality of the walk (X;; 0 < k < n) and Lemma 4,

I E[ SO XX > )R e ne % X X > 0]
dij 73 x T B[ X PR XL Xy > 0],

N

with some d; < co. (In this proof d; denotes a certain positive constant.) We
estimate the expectation in the last term. Using first the Markov property,
and then Lemma 4, we have that, if n > 2,

BlooX%0; Xy, X, > 0]
]E{ —h%o 1(X1>0)EX1 [e X1y Xy, Xy > 0]}
< dg ’I’Lig/QE[eigZO(l + ‘X1|)]
-3/2.

:d3n

Because of Lemma 3, d3 is finite. If n = 1, by Lemma 1, E[e‘“xl_ﬁZO] <
71 E[e#M1] < 0o. Combining these estimates, we get

I <dgj=32(n —j5)73/2 ifl<j<n—-1
The similar calculations show that
lo =~ 'Ele™* 0% X1, X, >0] <dsn??,
Iy =Efe-P-0% X X, > o]fE[ —eX=Bh0]  dgn /2,

Therefore we have the following.

n—1
Qi1 <drn ™2 +dgy 57 (n— )2
j=1
[n/2]
< drn3/% + 2dy Z §7P(n—4)%?
j=1

—-3/2 X
Sdpn~3? 2dg(g) S i
=1

= dg n_3/2.
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Let ¢t > 1, and n = [t]. Then we have

n -
Q: <E le—aXz (/ e Xs ds) ]
0

= E[e_aX‘*”] Qn
3/2

<y Mdion”

<dy t732

This concludes the proof of the lemma. O
Recall (2). Using Lemma 2, the Girsanov transform and Lemma 5 in turn,

we get, for any ¢t > 0,
) t -3
P(t) < 2 E[A;ﬁ] = 'K [em X </ e Xe ds> < cacg At/
0

Proposition 1 is proved.

3 The Lower Bound

On Lemma 6, 8 and 9 below we assume that X is in Class 1.
Lemma 6. If k> 0, then as t — oo
P{oy, >t} ~ cd e U (k)yit=3/2,

where ¢ = [ e U(z) dz and d = c1 /\/27[¢" (a)].

Proof. Tt is easy to see that vy 'e **P{oy > t} = Eple X; oo > t]. Ac-
cording to [10, Lemma 1], the right hand side is of the order cd U (k)t=3/? as
t — 0o0. The lemma is proved. ]

Lemma 7. There exists ¢4 < 0o such that, for any t >0, k > 0 and © > —k,
P, {0k >t} < cae®CTR (1 4+ 2 + k)5t /2.

Proof. We only have to show the lemma if ¢ > 1. Put y = = + k and n = [t].
Then, by Lemma 4,
Py{or >t} =Py{oo >t} <Py {X; >0,...,X,, >0}
= yneayIAEy [e*ax"; X1>0,...,X, > O]

< const.Ay"e (1 + y)n /2,

which shows the lemma. O
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Lemma 8. Let k > 0 and F : D[0, s] — R be continuous and bounded. Then
as t — o0,

E[F(Xu;ugs)F(X(t i u<s) | op >t

— Ex[F(Yy — i/ dze U (2) E.[F (Y, — k; u < 5)].
0

The preceding lemma can be derived from [10, Theorem 2]. Using Lemmas
6, 7 and 8, we get the following.

Lemma 9. If A >0 and k > 0, then
tlim fy_tt?’/Q]E[e_)‘At; or > t] = Jk(N),
where Ji(X\) is equal to

de**U (k) Ey exp(—)\ek/ e Vs ds)
0

></ dze_azU(z)Ezexp(—)\ek/ e_sts).
0 0

Proof. For the function F(w) = exp(—=A[; e~**) du), w € D0, 5], we can use
Lemma 8. Applying Lemmas 6 and 8 with the function F', we have

exp (—)\/ e N du); o >t = Jg(N).
[0,s]U[t—s,t]

Recall that A; = fg e~*» du. Then

t—s
0 <exp <—)\/ e Xu du) —exp(—AA4;) < /\/ e X du.
[0,s]U[t—s,t] s

By these estimates, our lemma follows from

lim lim v~ Y32 E

§—00 t—00

t—s
lim sup lim sup ’yftt3/2/ E[efX“; o > t] du = 0.

§—00 t—o0

We show the above. Using Lemma 7, we see that, for any x > —k,
TP {or >t} < cue sup{ (I+2)e 17a)z}’ytt73/2
= const.ek’ytt 3/2,
Applying first the Markov property, and then the inequality above, we have

Ele ;03 > t] = Ele ™ Px, {0} >t — u}; oy > u]
< const. e2Fryt(t — u) 7324 73/2,
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Therefore
t—s t—s
/ Ele™*"; o > t] du < const.e%vt/ (t —u)~32u=3/2 du

t/2
= const. eZk*yt/ (t —u)~3 2432 du
S
< const. e2k7tt73/2871/2,
which shows the desired result. Hence we get the lemma. a

The positivity of Ji(A), which we use in the proof of Proposition 2, follows
from the next lemma.

Lemma 10. For any = > 0,

]Ez{ / e—Ytdt] and ]Er{ / e_Ytdt}
0 0

are not greater than 3, U(1)U(1).

Proof. We prove only the claim to Y. By Fubini’s theorem and the definition

of Y, N i
U(z)E, [/O e Ve dt] =K, [/O OeXtU(Xt)dt].

The right hand side is written as follows: see e.g. [2, p.176] or [10, Lemma 10].

(e)s) oo
E, {/ e X U(Xy) dt} = cl/ dV(y)/ AV(2) e TV (2 +y — 2),
0 0 (0,2)

where V(-) = U(-+4) and V(-) = U(-+). Using the inequality U(z) <
U(1)(x + 1) and the integration by parts formula, we have

]

/ Uz +y—2)dV(z) < (1)/ e(z+y—2z+1)dV(2)
[0,2) [0,z)

In the same way,

This combined with the first equation in this proof shows our claim. g



226 Katsuhiro Hirano

By Jensen’s inequality and Lemma 10, we observe that, for all A > 0,
J(\) = de®*U (k) exp <—)\ek Ey [/ e Yo dsD
0

X / dze_azU(z)exp(—)\ek]Ez {/ e Y ds])
0 0

> deakﬁ(k)/ e **U(z)dz x exp(—6c1 A" U (1)U(1))
0
> 0.

Obviously Ji(\) is non-decreasing in k. Therefore there exists a positive limit
Joo(A) 1= limg oo Ji(A). Recall (2) and rewrite f(z) = [;° e **E[Ae*]dA.
Then we have

P(t) > / Efe ;0 > | E[Ae ] dA.
0

Using first Lemma 9 with Fatou’s lemma, and then the monotone convergence
theorem in k, we get

lim inf v~ 3/2P (1) > / JNE[Ae ] dr=:C > 0. (3)
— 00 0

The positivity of C' comes from the fact that Joo(\) > 0 and E[Ae~*4] > 0 for
A > 0. We investigate the structure of J(\) (especially for the convenience
of Section 5). By the change of variable x = z — k, Jx(\) is expressed as

o0

Jk(A) = m QA.k(O)/_k e ““gar(x)de, (4)

where

k(@) =Uk+2)Erys [exp(—)\ek/ e~ Sds)], x> —k,
0

k() =Uk+ 2)Eppy {exp(—)\ ek/ e Y ds)], x> —k.
0

Recalling the definition of Y, we see

¢
tlim Uk +2)Epyy {exp (—)\ ek/ e Ye ds)}
— 00 0

t
tlim ]Ek+w [exp <—)\ ek/ e s ds)ﬁ(Xt); og > t]
— 00 0

Irk(T)

¢
tlim E, {exp(—)\/ e s ds) Uk + Xy); op > t} .
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The expectation in the last term is non-decreasing in k, so is gx r(z). Hence
we can define the following limits for each € R and A > 0.

gx(x) = lim Uk +2)Epye {exp (—Ae’f/ooo e Vs ds)] , 5
5

ga(z) klim Uk+2)Egin {exp (—)\ ek/ e Y ds)] .
Letting k — oo in (4), by the monotone convergence theorem and (5), we have

Jo) = — g0 [ eogy(x) da. 6
N = o )| e e (6)

The combination of (3), (5) and (6) establishes Proposition 2.

4 Proof of Theorem 1

The results in the previous sections enable us to prove Theorem 1. Proposi-
tions 1 and 2 ensure 0 < C < o0, so that Theorem 1 follows from the estimate
limsup, . v 3/2P(t) < C. We show it. Recall (2). Since f(z) is decreasing,
for any 6 > 0 and k£ > 0,

P(t) = E[f(As); o >t = 6] + E[f (As); ok <

t— ]
< E[f(Ai—s); ok >t — 0] + E[f(As); ok <

-4l (7)

~+

Thanks to the expression f(z) = [, e "*E[Ae **]d), for any s > 0,

E[f(As); o > s] = /OOO]E[eAAS; o > s| E[Ae*)‘A] dA.

Plainly E[e™*<; o3 > s] < P{oy > s} and [;° E[Ae"*4]dX = 1. Thus, by
Lemmas 6 and 9 with the dominated convergence theorem,

lim YU E[f(Ars); op >t —0] =770 / Je(WE[Ae]dX. (8)
— 00 0

Using Lemma 2, we have

YTUE[f(Ar); o <t — 0] = E[e X f(Ay); on <t — 6]

t -B
< le_‘)‘xt (/ e s ds) sop <t — 51
0
) t -8
< o [em Xt (/ e Xe ds) o <t—90
ok

< cacse” BORE[(t — 04) 732, 0, <t — 6] (9)
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The last inequality comes from the strong Markov property conditioning on
Fs, and Lemma 5. From the Girsanov transform P on 7, ,

P{t < oy, <t +u} = E[eX @) Houdl@) 4 < ) <t 44l
<y ek plo > 1)
ey (1 + k)32,

In the last inequality we used Lemma 7. Let n = [t] and § < 1. Applying the
estimate above in the first inequality below, we obtain

E[(t — 1) 73/2; o <t — 0]
n—1

= E[(t—ok)_3/2;j—l<ok < J] +E[(t—ok)_3/2;n—l<ak <t—4]
j=1

n—1
es(1+k) (Z(n - j)—3/2j—3/2 + 5_3/271_3/2)

Jj=1

N

6(1+k)o—3/2n=3/2
7(1 4 k)§—3/2473/2,

NN
o o

Combining (9) with the above, we observe

limsupy ™2 E[f(Ar); o <t — 0] <egd™ Y2 (1 4 k)e 70k,

t—o0

In view of (7), (8) and the preceding inequality, we get

lim sup v ~*3/2P(t) < ’y_‘;/ Je(N)E[Ae M) d\ + cgd 2 (1 4 k) e Pk,
t—o0 0

Letting £ — oo, and then § | 0, we see that the right hand side above tends

to C (cf. (3)). This concludes the proof of the theorem.

5 The Drifted Brownian Case

In this section we compute the precise value of C' in case of the drifted Brow-
nian environment. Let X; = B, — at with 0 < o < 1 and &§& = W, — bt
with b > «/2 where B and W are independent Brownian motions. It is easy
to see that the conditions (c)—(e) are fulfilled, and v = e=2"/2_ Moreover X
and X are Brownian motions under P, so that U(z) = U(x) = v2z (by our
normalization of local times) and gx(z) = ga(z). In particular Y and Y are
three-dimensional Bessel processes. To determine gy (z), we need the following.

Lemma 11. Let (Ry; t > 0) be a three-dimensional Bessel process. Then, for
any x >0 and A > 0,
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E, exp (—)\/ e B dt)
0

= %(Ko (22X e */?) — Ko(2v23)

Io(2v2))

where Iy and Ko are the modified Bessel functions with index 0 of the first
and third kind respectively.

T 1o (2v2)e —“5/2))

Remark 1. In particular, letting x — 0 with L’Hospital’s rule, we recover

Eexp(—)\/ooo e e dt) — _2\/ﬁ<(K{)IOI—Ogi/I%§2\/ﬁ))

1
- Iy (2\/5) .

In the second equality we used the Wronskian relation (Kol —K{Io)(y) = 1/y.
This formula is in agreement with Donati-Martin and Yor [7].

Proof of Lemma 11. According to the formula 2.10.1 in [4, p. 345], we have
that, if z > x,

T p 0\ 2S0(2v2Xem /2, 2V2))
E,exp| —A e dt ) = ,
0 z So(2V2Xe=7/2,2v/2))

where T, = inf{t > 0 : Ry = z} and Sy(a,b) = Iy(a)Ko(b) — Ko(a)lo(b).
Recall that Iy(a) — 1 and Ky(a) ~ —loga as a — 0. Letting z — oo in the
equality above, we get the lemma. a

Since Ko(a) — 0 and Ip(a) — oo as a — oo, by (5) and Lemma 11, we
have gy (z) = 2%/2Ky(2v2Xe~*/?). Hence, by (6),

25/2
JOO(/\):TKO(Q\/_)/ e VKo (2v2Xe V) dy
27/2 o
:TKo(m/ﬁ)/o 2207 K (2V2)02) dz (10)
23/2—a
- (@)X Ko (2V2)).

In the third equality we used the identity [~ t** ' Ko(t)dt = 4"~ I'(v)?, v >
0. The distribution of A is given by the following result due to Dufresne [8].
We also refer to Yor [14].

Lemma 12. For any x > 0, we have

/Ooo dt exp(W(t) - gt) 4 Z%
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d . . . . . .
where = means equality in law and Z, is a gamma variable of index k, i.e.,

m—le—t

I'(x)

P{Z, e dt} = dt, t>0.

By Lemma 12, A 4 2/Zap. In other words
221)
P{A e dz} = T20) x~ (0D o2/ g x> 0.

Thus (3) and (10) combined with the above tell us that

22bfo¢+3/2 T 2 00 00
C= Vol F((Czyz))) /0 /O Aop e AeF2/2) | (94/2)0) da d.
If we use the identity

* 22\ dt
Ko(z) = (—t - —) & 0,
o(2) /0 exp 1) % z >

the double integral in C' is written as follows.

/OO/OO dx dt (21&)_1:10_21763_(t"rz/93)/Oo A\ Ao~ (@+2/)X
0 Jo 0
= F(l - OL)/ dl’/ dt (Qt)_lx_Qbe_(t+2/w) (I + 2/t)a—1

I'l-—a« . o
- ﬁ/ dy/ At (1+)7 7 ()™~ tem T (@ = 2/1y)
1 © o
1

= 92b—a+1 I'l—a)I'(2b— a)B(1 — a,2b — ).

Consequently we get the following.

Proposition 3. Assume that Xy = By —at with 0 < a < 1, and & = —bt
with b > a/2. Then as x — oo,

P(z) ~ Cz=%? exp(—za?/2)
where

(2m)3/2 I(2b— «)?
1—cos(2ra) « T'(20)I'(26 —2a + 1)

C:

When b = «, the same asymptotic was first obtained by Kawazu-Tanaka
[11], and also appears in Comtet—-Monthus—Yor [6]. In [11], they say
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25/2 20
T /Al (2a) //// Tty y?e e W ysinhu du da dy dz,

where v = (1 + 22)/2 + zcoshu. We may check the equivalence of the two
expressions of C' in case of b = a. To see it, we use the following.

i v x4 22 zz\ dv
2Ko(2)Ko(z) = - = K, (—)—, ; 0,
o(z)Ko(z) /0 exp( 5 50 > %)% T,z >

o0 o0
Ko(y) = / e yeoshu gy — y/ e Yeosh iy sinh u du, y > 0.
0 0

Go back to (10). These formulae and the change of variable v = 8\/x imply

2752w e (N) = / 22719 K0 (2V20N) Ko (2V2)2) dz
0
I AP o Cv 81427 8Az\ dv
_/0 ‘ dz/o exp( 2 2v KO< v )U
> > 4 1 2 d
— / L20-1 dz/ exp(__A _ M)Ko(xz)—x
0 0 X 2 X
= / / / 2%* exp(—4 \/x — vx) usinhu du dz dz.
0 Jo Jo

Recall (3). Multiply the above by E[Ae™*4], and integrate over (0,00) in .
Then we may end the computations. Thus all that remains to show is the

following. Using the fact A 4 2/Z34 by Lemma 12 and Fubini’s theorem, we
have

e 22 R
74)\/m]E A —AA d\ = / —2« 72/wd
/0 ¢ [Ae™] I'(2a) cwrd? ¢ v

- Fos /°° T yrelev2dy  (w=4/y),
I'2a) Jo xz+vy

which shows the equivalence of C. Therefore, when b = «, Proposition 3
accords with Kawazu—Tanaka [11].

We point out the following. The proof of Kawazu—Tanaka [11] relies essen-
tially upon the formula of the joint distribution (eZ®), fot e?B(5) ds) for fixed
t > 0, which was given by Yor [15]. Needless to say, this formula is very useful.
However we cannot expect an analogous one if Brownian motion is replaced
by a Lévy process. One of our motivations was to get Proposition 3 without
such a formula. Such an attempt has been already done by Kotani [12] with
analytic methods. The function gy(—xz) = 2%/2K(2v/2Xe*/?) is nothing but
gxa(—00, x) appeared in [12] where gy (z,y) is the Green function of 271e™*A
on R and —oo is the entrance boundary of the corresponding diffusion.



232 Katsuhiro Hirano
6 Appendix

In this appendix we consider 1) and 2) of Theorem 0.
First point

We note that the condition ¢”(1) < 0 may be omitted from 2) of Theo-
rem 0. We show it under somewhat mild hypotheses. Suppose that |¢(1)] < oo,
¢'(1-) = 0 and —oco < E[X;] < 0. By the hypothesis |¢(1)] < oo, for 6 € (0,1),

e (0 — ' (0)) = B[X7 7],
Since ¢'(1—) = 0, letting 6 1 1, we obtain
—e Wy (1-) = E[X2eX1] > 0.

If ¢”(1—) = 0, the preceding relation yields that X; = 0 almost surely, so
that E[X;] = 0. It is a contradiction. As a result ¢ (1—) < 0, which shows our
assertion because ¢’ (1—) = ¢/'(1) and ¢’ (1—) = ¢ (1) under the condition (a).

Second point

The following result is an extension of iv) of Proposition 3.1 in [5]. This lemma
will be used in the proof of Proposition B in the third point.

Lemma A. If ((;t > 0) is a Lévy process satisfying E[C1] = 0, then

E UOOO e ¢ dt} - = E[¢4].

Proof. Let E[(1] > 0. The strong law of large numbers states that [~ e~ ds <

oo almost surely. Set H; = e %/ ftoo e S ds, and define the shift operator
(0¢; t > 0) such that (s(0:w) = (s4¢(w) — G (w). Then

oo —1 oo —1
Hy(w) = (/ oGt () —Corr (@) ds) _ (/ o= (01) ds) — Ho(0w).
0 0

The right derivative of —log( ftoo e G ds) is H; which is right continuous.
Thus, integrating Hy(w) = Hy(fsw) over [0,¢], we have, for almost every w,

oo oo t
log (/ e 6@ ds) — log (/ e G ds) = / Hy(0sw) ds, vt > 0.
0 ¢ 0

Divide both terms by ¢, and then take the limit as ¢ — co. The right (resp. left)
hand side converges to E[Hy| (resp. E[(1]) by virtue of Birkhoff’s ergodic
theorem (resp. the strong law of large numbers). Accordingly we get

-1

E[¢| =E[Hy =E UOOO e % ds}

Let E[¢1] = 0. Cousidering ({; + ut; t > 0) with g > 0, and then letting p | 0,
we have the desired result. a
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Remark 2. Lemma A was also discussed in Bertoin and Yor [3]. They studied
the close relation between the distributions of fooo e~¢ dt and the semi-stable
Markov process obtained by Lamperti’s transform of {. See for details [3].

Third point

The following proposition leads to 1) and 2) of Theorem 0, and corresponds
to Afanas’ev [1].

Proposition B. Assume that ¢(1) is finite, and (1) > 0.
1) If ¢'(1—) > 0, then as x — oo,

P(z) ~ e "W/ (1-)p(1) "

2) If ¢’(1-) =0 and |¢"'(1-)| < oo, then

Pla) ~ e Wy(1)~1 /]¢" (1) /2mz.

We should pay attention to the difference of the conditions between Propo-
sition B and Theorem 0. We mention that the proof of 2) of Theorem 0 depends
on the finiteness of () for some 6 > 1, see sect. 4.1. in [5]. Before proving
Proposition B, we remark the following. Owing to ¥(1) > 0, E[A] = ¢(1)7!
and zf(x) increases to E[A] as T co. As in Section 1, the Girsanov (or
Esscher) transform P of P is defined by

P =t .p on F.
Then e P(t) = E[e** f(A,)]. So the asymptotic of the last term is needed.

Proof. 1) Put C; = fot eXs ds. Using the equivalence in law (Xy; 0 < s < t) 4
(Xt — X(4—5)—; 0 < s < 1), we have
E[e ™ f(A)] = E[e ™ f(e™¥*Cy)]
=E[e X Cf (e Cy)C .
If t > 1, the integrand in the last term is less than E[A]C;'. Using the
d

Girsanov transform P and (Xs;0<5<1) = (X1 = X155 0< 5 < 1), we
see
E[C; ] = e?WE[A!] < e?WE[eM] < .

The ﬁnit~eness comes from Lemma 1. Note that lim; o e~ X*C}, = 00 P-a.s.
because E[X7] = —¢/(1—) < 0. Hence, by the dominated convergence theorem,

lim E[e™™ f(A;)] = (1) 'E[CL].

t—oo

According to Lemma A, E[CZ!] = —E[X,] = ¢/(1—). Thus 1) is proved.
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_2) Since E[X1] = —¢/(1-)
E[X?] = —¢"(1—) > 0. Thus, if
totic holds: see [5, p.99].

= 0, it was shown in the first point that
E[X?] = |¢"(1-)| < oo, the following asymp-

E[e*XtAt_l] ~ /9" (1-)|/2mt as t — oo.
By Lemma A, if k > 0, P(Ao, < k) < kE[AZ!] = KE[X,] = 0. Therefore

Ele™ ™ A7Y Ay < k] < E[e™™ (Ar = Ayya) ™5 Ayya < K]
= E[e X2 A, )| P{A;/, < k}
= o(t_l/z).
Combining the results above, we get, for any fixed k > 0,
]E[e_XtAt_l; Ay > k] ~ /]9 (1-)|/2mt as t — oo.

Observe that z f(z) < E[4] for Yz > 0, and that, for Ve > 0, 3k > 0 such that
xf(x) = (E[A] — ¢) for Vo > k. Using these 1nequahtles we have

(E[A] — e)E[e XA, A > k] <E[e ¥ f(A)] <E[AJE[e ¥ 4]
The preceding relations show

Ble= f(4)] ~ p() VP A 2rt ast — o

The proof of the proposition is complete. g
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