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Summary. We propose a probabilistic scheme to estimate the Hölder norm and the
gradient of the solutions of a system of quasi-linear PDEs of parabolic type. Indeed,
thanks to the theory of Forward Backward stochastic differential equations, we are
able to give a stochastic representation of the solutions of such systems of PDEs.
Making use of Krylov and Safonov estimates, we deduce a Hölder estimate of these
solutions in the case of uniformly parabolic systems with measurable coefficients.
Moreover, from a variant of the Malliavin–Bismut integration by parts formula, we
establish under appropriate assumptions an estimate of the supremum norm of the
gradient of these solutions.

Résumé. Nous proposons une démarche probabiliste pour estimer la norme Hölder
ainsi que le gradient des solutions d’un système d’EDPs quasi-linéaires de type
parabolique. En effet, à l’aide de la théorie des équations différentielles stochas-
tiques progressives rétrogrades, nous sommes capables de donner une représentation
stochastique des solutions de tels systèmes d’EDPs. En appliquant les estimations de
Krylov et Safonov, nous déduisons une estimation Hölder de ces solutions dans le cas
de systèmes uniformément paraboliques à coefficients mesurables. De plus, à l’aide
d’une variante de la formule d’intégration par parties de Malliavin–Bismut, nous
établissons sous des hypothèses appropriées une estimation de la norme supremum
du gradient de ces solutions.

Key words: Forward-backward stochastic differential equation, gradient estimate,
Hölder estimate, integration by parts, system of quasi-linear PDEs of parabolic type.

Introduction

Let us firstly recall that in our paper Delarue [6], we establish a theorem
of existence and uniqueness of solutions to Forward-Backward SDEs in the
case of a non-degenerate diffusion matrix. Basically, this theorem is proved in
two steps. First, applying a fixed point theorem, we obtain by means of purely
probabilistic tools a unique solvability result in the case of a small enough time
duration. Then, in a second part, using a gradient estimate of the solutions
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of a system of quasilinear PDEs of parabolic type, given in the monograph of
Ladyzhenskaya et al. [18], we deduce thanks to the non-degeneracy assumption
a global existence and uniqueness result.

The purpose of this paper is simply to develop a probabilistic scheme to
establish such an estimate.

Of course, several articles have already proposed some probabilistic ap-
proaches to establish estimates of the solutions of a second order PDE. Among
them, the Krylov and Safonov estimate, proved in Krylov and Safonov [15], is
certainly one of the most famous results. Indeed, this fundamental work has
permitted to prove the Hölder continuity of the solutions of a linear second
order PDE of nondivergence type with measurable coefficients, and then to
extend to such operators the older result due to De Giorgi and Nash related
to the divergent case.

Moreover, to obtain from a probabilistic point of view a gradient esti-
mate of the solutions of a second order PDE, the now well-known theory
of stochastic flows plays an essential role. Actually, let us assume that for
(t, x) ∈ [0, T ]×R

P , Xt,x stands for the solution, starting from x at time t, of
a stochastic differential equation associated to a differential operator L, then,
it is well known that such a theory permits to study the regularity of the pro-
cess X upon the parameter (t, x), and therefore, thanks to the Feynman–Kac
formula, very successfully investigate the regularity of the solutions of a PDE
associated to the operator L and defined on the whole set [0, T ]× R

P .
However, this approach may be fruitless in many cases. Indeed, assume

for example that D is a cylinder of the form [0, T [× {x ∈ R
P , |x| < R} and

that u is a harmonic function on D with respect to L and admits from the
Feynman–Kac formula the following representation:

∀ (t, x) ∈ D, u(t, x) = E
[
u
(
τ t,x, Xt,x

τ t,x

)]
, (0.1)

where for every (t, x) ∈ D, τ t,x stands for the first exit time of (s,Xt,x
s )t�s�T

from D. Then, estimating the gradient of the function u by differentiating the
expression (0.1) is unfortunately hopeless since the function (t, x) ∈ D �→ τ t,x

may be not differentiable with respect to x.
Actually, several articles have proposed some schemes to go around such an

obstacle. For example, Krylov [14] has developed the notion of quasiderivatives
of the solution of a stochastic equation. Inspired by this work and by the earlier
papers of Bismut [2] and Elworthy and Li [7], Thalmaier [26] has proposed
a variant of the Malliavin–Bismut integration by parts formula, which has
been successfully applied in Thalmaier and Wang [27] to establish a gradient
estimate of interior type of the solutions of a linear elliptic equation in the
more general framework of manifolds.

Let us also mention that, in another direction but still in the framework
of manifolds, Cranston ([4] and [5]) and Wang ([28] and [29]), have proposed
to estimate the gradient of a harmonic function by using earlier techniques of
coupling of two Brownian motions.
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In our paper, using the theory of Forward-Backward SDEs to represent
the solutions of a system of quasi-linear PDEs (see the papers of Ma et al.
[20], Pardoux and Tang [24] and Delarue [6] on this subject), we successfully
adapt to our case the Krylov and Safonov result and the Thalmaier approach.
Actually, we obtain in a first step interior estimates of Hölder type of the so-
lutions of a uniformly parabolic system of quasilinear PDEs with measurable
coefficients (see also Ladyzhenskaya and Ural’tseva [19] for an analytical point
of view). Under certain assumptions on the initial condition, we deduce global
Hölder estimates of these solutions. In a second step, we establish under ap-
propriate assumptions on the coefficients both interior and global estimates of
the supremum norm of the gradient of these solutions, and in particular, we
deduce the gradient estimate that we used in our previous paper Delarue [6].

Moreover, let us mention that we also show, as a side result, how we can
deduce from the scheme given in Thalmaier [26] some properties of differen-
tiability of the function u given by (0.1).

Hence, the paper is organized as follows: section 1 is devoted to the study
of Hölder regularity of the solutions, and we deduce in section 2 estimates of
the gradient of these solutions.

Frequently Used Notations

• ∀N ∈ N
∗, 〈 . , . 〉 and | . | denote the Euclidean scalar product and the

Euclidean norm on R
N .

• ∀N ∈ N
∗, ∀x ∈ R

N , ∀ i ∈ {1, . . . , N}, xi denotes the ith coordinate of the
vector x.

• ∀N ∈ N
∗, ∀M ∈ N

∗, ∀x ∈ R
M×N , ∀ i ∈ {1, . . . ,M}, xi denotes the ith

row of the matrix x.
• ∀N ∈ N

∗, ∀M ∈ N
∗, ∀x ∈ R

M×N , xT denotes the transposed of the
matrix x.

• ∀N ∈ N
∗, ∀x ∈ R

N and ∀R � 0, BN (x,R) and BN (x,R) denote the
open Euclidean ball of dimension N , of center x and of radius R, and the
closed Euclidean ball of dimension N , of center x and of radius R.

• ∀N ∈ N
∗, µN denotes the Lebesgue measure on R

N .
• The notation [ . , . ] stands for the quadratic covariation bracket.

System of Quasi-linear PDEs and FBSDEs

We now introduce the system of quasi-linear PDEs that will be studied in this
paper, and then recall the principle of the probabilistic representation. As a
first consequence, we give an L∞-estimate of the solutions that will be crucial
in the sequel of the article.
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Let T be a positive real, and

b : [0, T ]× R
P × R

Q × R
Q×P −→ R

P

f : [0, T ]× R
P × R

Q × R
Q×P −→ R

Q

σ : [0, T ]× R
P × R

Q −→ R
P×P

H : R
P −→ R

Q

(A.0)

be measurable functions with respect to the Borel σ-fields.

Assumption (A). We say that the functions b, f,H and σ satisfy Assump-
tion (A) if there exist four constants α0 > 0, L, λ > 0 and Λ, such that they
satisfy (A.0) as well as the following properties:

(A.1) ∀ t ∈ [0, T ], ∀ (x, y, z) ∈ R
P × R

Q × R
Q×P ,

|b(t, x, y, z)| � Λ×
(
1 + |y|+ |z|

)
,

|f(t, x, y, z)| � Λ×
(
1 + |y|+ |z|

)
,

|σ(t, x, y)| � Λ×
(
1 + |y|

)
,

|H(x)| � Λ.

(A.2) ∀ (t, x, y) ∈ [0, T ]× R
P × R

Q,

∀ ζ ∈ R
P , 〈ζ, a(t, x, y)ζ〉 � λ |ζ|2,

where the function a is defined as follows on [0, T ]× R
P × R

Q:

∀ (t, x, y) ∈ [0, T ]× R
P × R

Q, a(t, x, y) = σσ∗(t, x, y).

(A.3) ∀ (x, x′) ∈ (RP )2, |H(x′)−H(x)| � L |x′ − x|α0 .

Notations. Let
W 1,2,P+1

loc

(
]0, T [× R

P ,RQ
)

be the set of all functions u : ]0, T [× R
P −→ R

Q such that, for all R > 0,
∫

]0,T [×BP (0,R)

(
|u|P+1 + |u′t|P+1 + |u′x|P+1 + |u′′x,x|P+1

)
dµP+1 <∞. (0.2)

We recall from Lemma 3.3 of Chapter II of Ladyzhenskaya et al. [18] that
W 1,2,P+1

loc (]0, T [ × R
P ,RQ) is embedded in C([0, T ] × R

P ,RQ), i.e., for each
function u ∈ W 1,2,P+1

loc (]0, T [ × R
P ,RQ), there exists a continuous function

on [0, T ] × R
P which is equal to u almost everywhere. We will always be

considering this function.

Under these notations, we assume that there exists

θ ∈ W 1,2,P+1
loc

(
]0, T [× R

P ,RQ
)
∩ L∞

(
[0, T ]× R

P ,RQ
)
,
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solution of the following system:

(E)






∀ (t, x) ∈ [0, T ]× R
P , ∀ � ∈ {1, . . . , Q},

∂θ�
∂t

(t, x) +
1
2

P∑

i,j=1

ai,j(t, x, θ(t, x))
∂2θ�

∂xi∂xj
(t, x)

+
P∑

i=1

bi
(
t, x, θ(t, x),∇xθ(t, x)σ

(
t, x, θ(t, x)

))∂θ�
∂xi

(t, x)

+ f�(t, x, θ(t, x),∇xθ(t, x)σ(t, x, θ(t, x))
)

= 0,

∀x ∈ R
P , θ(T, x) = H(x).

Representation of the function θ. Thanks to the theory of FBSDEs, we
firstly give a stochastic representation of the function θ.

To this aim, we consider (t, x) ∈ [0, T [× R
P . Thanks to Assumption (A)

and thanks to Theorem 1, Paragraph 6, Chapter II of Krylov [13], we know
that there exists a triple ((X,B), (Ω,F ,P), (Fs)t�s�T ), which is a weak solu-
tion of the SDE:

∀ s ∈ [t, T ], Xs = x +
∫ s

t

σ
(
r,Xr, θ(r,Xr)

)
dBr. (0.3)

Hence, we can define:

∀ s ∈ [t, T ], Ys = θ(s,Xs), Zs = ∇xθ(s,Xs)σ(s,Xs, Ys). (0.4)

Thanks to Theorem 4, Paragraph 2, Chapter II of Krylov [13], note that the
process Z is correctly defined up to a µ1⊗P neglictible set, i.e., if ∇̃xθ coincides
with ∇xθ almost everywhere, then the associated process Z̃ is equal to Z up
to a µ1 ⊗ P neglictible set.

The following proposition details the link between FBSDEs and PDEs (see
also Ma et al. [20], Pardoux and Tang [24] or Delarue [6] on this point):

Proposition 0.1. Let τ be an (Fs)t�s�T stopping time such that:

∃m � 0, P

{
sup
t�s�τ

|Xs| � m

}
= 1. (0.5)

Then, the process (Xs, Ys, Zs)t�s�τ defined in (0.4) satisfies the following
FBSDE:






Xs = x +
∫ s

t

σ(r,Xr , Yr) dBr,

Ys = θ(τ,Xτ ) +
∫ τ

s

e(r,Xr, Yr, Zr) dr −
∫ τ

s

Zr dBr,

for all s ∈ [t, τ ], and E

[∫ τ

t

(
|Xs|2 + |Ys|2 + |Zs|2

)
ds

]
<∞,

(0.6)
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where, for all (s, u, v, w) ∈ [0, T ]× R
P × R

Q × R
Q×P ,

e(s, u, v, w) = w
(
σ−1b

)
(s, u, v, w) + f(s, u, v, w). (0.7)

Proof. From the Sobolev embedding theorems, note that there exists a con-
stant C(0.1), only depending on m, P , Q and T , such that:

µP+1

{
(r, y) ∈ [0, T ]×BP (0,m), |∇xθ(r, y)| > C(0.1)

×
(∫

BP (0,m)

(
|θ′x|+ |θ′′x,x|

)P+1(r, u) du
)1/(P+1)

}
= 0. (0.8)

Hence, almost surely:
∫ τ

t

|∇xθ(r,Xr)|2 dr

� C(0.1)

∫ T

t

(∫

BP (0,m)

(
|θ′x|+ |θ′′x,x|

)P+1(r, u) du
) 2

P+1

dr

� C(0.1)(T − t)
P−1
P+1

(∫ T

t

∫

BP (0,m)

(
|θ′x|+ |θ′′x,x|

)P+1(r, u) du dr
) 2

P+1

.

(0.9)

Hence, thanks to the system of PDEs (E) and thanks to Theorem 1, Paragraph
10, Chapter II of Krylov [13], we deduce (0.6). 
�

L∞-estimate of θ. Actually, the representation (0.6) is the main tool that
we will employ to estimate the function θ. As a first application of this deep
connection between FBSDEs and PDEs, we give the following bound of ‖θ‖∞:

Theorem 0.1. Under Assumption (A), there exists a constant M0 only de-
pending on Λ and T , such that the following estimate holds:

∀ (t, x) ∈ [0, T ]× R
P , |θ(t, x)| � M0. (0.10)

Proof. Consider (t, x) ∈ [0, T ] × R
P . Keeping the notations (0.3) and (0.4),

we define for every n ∈ N:

tn = inf{t � s � T, |Xs − x| � n}, where inf ∅ = T , (0.11)

as well as the following process:

∀ s ∈ [t, T ], Bn
s = Bs −

∫ s∧tn

t

(
σ−1b

)
(r,Xr, Yr, Zr) dr. (0.12)

Then, from (0.9) and the Novikov condition, we know from the Girsanov
theorem that Bn is an (Fs)t�s�T -Brownian motion under the probability
measure P

n given by:
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∀ t � s � T,
dP

n

dP

∣∣∣∣
Fs

= exp
(∫ s∧tn

t

〈(
σ−1b

)
(r,Xr, Yr, Zr), dBr

〉

− 1
2

∫ s∧tn

t

∣∣(σ−1b
)
(r,Xr, Yr, Zr)

∣∣2 dr
)
. (0.13)

The expectation under P
n is denoted by E

n.
Then, thanks to Proposition 0.1 and to (0.9), we deduce that the process

(Xs, Ys, Zs)t�s�tn satisfies the FBSDE:





Xs = x +
∫ s

t

b(r,Xr, Yr, Zr) dr +
∫ s

t

σ(r,Xr, Yr) dBn
r ,

Ys = θ(tn, Xtn) +
∫ tn

s

f(r,Xr, Yr, Zr) dr −
∫ tn

s

Zr dBn
r ,

for all s ∈ [t, tn], and E
n

[∫ tn

t

(
|Xs|2 + |Ys|2 + |Zs|2

)
ds

]
<∞.

(0.14)

Referring to Pardoux [22], we deduce that there exists a constant C(0.2), only
depending on Λ and T , such that for every n ∈ N:

E
n

[
sup

t�s�tn
|Ys|2

]
+ E

n

[∫ tn

t

|Zs|2 ds
]

� C(0.2)
(
1 + E

n
[
|θ(tn, Xtn)|2

])
. (0.15)

Therefore, for every n ∈ N:

E
n

[
sup

t�s�tn
|Ys|2

]
+ E

n

[∫ tn

t

|Zs|2 ds
]

� C(0.2)
(
1 + E

n
[
|H(XT )|2

]
+ ‖θ‖2

∞ P
n{tn < T }

)

� C(0.2)

(
1 + E

n
[
|H(XT )|2

]
+

1
n2
‖θ‖2
∞ E

n

[
sup
t�s�T

|Xs − x|2
])

.

(0.16)

Moreover, noting that (Xs)t�s�T satisfies the following equation:

Xs = x +
∫ s∧tn

t

b(r,Xr, Yr, Zr) dr +
∫ s

t

σ(r,Xr, Yr) dBn
r , (0.17)

for all s ∈ [t, T ], we deduce from (0.15) that there exists a constant C(0.3),
only depending on Λ and T , such that for every n ∈ N:

E
n

[
sup
t�s�T

|Xs − x|2
]

� C(0.3)
(
1 + ‖θ‖2

∞
)
. (0.18)

Therefore, injecting (0.18) in (0.16), and letting n → +∞, we complete the
proof. 
�
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1 Hölder Estimate of the Solution

In this section, we assume that the coefficients satisfy Assumption (A).

The goal of this section is to prove, under Assumption (A), a Hölder esti-
mate of the function θ. To reach such an aim, we make use of the Krylov and
Safonov estimate (see Krylov and Safonov [15]), and, thanks to the represen-
tation formula (0.6), we adapt their scheme to the quasilinear case.

Note that Theorem 0.1 plays an essential role in the whole section.
We firstly introduce the following notations:

Notations. For all (t, x) ∈ [0, T ]× R
P and all 0 � R � (T − t)1/2, let:

Q(t,x)(R) =
{

(s, y) ∈ [0, T ]× R
P ,

0 � s− t � R2, max
i=1,...,P

|yi − xi| � R
}
. (1.1)

Here is the main result of this section:

Theorem 1.1. There exist two constants Γ (1.1) and α > 0, only depending
on λ, Λ, P , Q and T , such that for all (t, x) ∈ [0, T [×R

P , 0 < R � (T−t)1/2,
and i ∈ {1, . . . , Q},

osc
Q(t,x)(R)

(θi) � Γ (1.1)

((
R

R0(t)

)α
w0(t, x) + RR0(t)

)
, (1.2)

where:




w0(t, x) = max

i=1,...,Q, ε=±1

(
osc

Q(t,x)(R0(t))

(
10 εQM0θi + |θ|2

))
,

R0(t) = (T − t)1/2.
(1.3)

Proof. Fix (t, x) ∈ [0, T [×R
P . Following the proof of Proposition 0.1, consider

a weak solution ((X,B), (Ω,F ,P), (Fs)t�s�T ) of the SDE:

Xs = x +
∫ s

t

σ
(
r,Xr, θ(r,Xr)

)
dBr. (1.4)

Consider an (Fs)t�s�T stopping time τ , such that:

∃m � 0, P

{
sup
t�s�τ

|Xs| � m

}
= 1. (1.5)

Hence, we know that the process (Xs, Ys, Zs)t�s�τ defined in (0.4) satisfies
the following FBSDE:






Xs = x +
∫ s

t

σ(r,Xr, Yr) dBr,

Ys = θ(τ,Xτ ) +
∫ τ

s

e(r,Xr, Yr, Zr) dr −
∫ τ

s

Zr dBr,

for all s ∈ [t, τ ], and E

[∫ τ

t

(
|Xs|2 + |Ys|2 + |Zs|2

)
ds

]
<∞.

(1.6)
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Hence, for all i ∈ {1, . . . , Q} and µ ∈ R, we have for every s ∈ [t, τ ]:

µ(Ys)i + |Ys|2 = µ θi(τ,Xτ ) + |θ(τ,Xτ )|2

+
∫ τ

s

(
µfi + 2〈Yr, f〉

)
(r,Xr, Yr, Zr) dr

+
∫ τ

s

(µ(Zr)i + 2Y ∗r Zr)
(
σ−1b

)
(r,Xr, Yr, Zr) dr

−
∫ τ

s

|Zr|2 dr −
∫ τ

s

(
µ(Zr)i + 2 Y ∗r Zr

)
dBr.

(1.7)

Fix (i, µ) ∈ {1, . . . , Q} × R and put:

∀ r ∈ [t, T ], Z+
r = µ(Zr)i + 2 Y ∗r Zr. (1.8)

Then, we have for every s ∈ [t, τ ]:

µ(Ys)i + |Ys|2 = µ θi(τ,Xτ ) + |θ(τ,Xτ )|2

+
∫ τ

s

(
µfi + 2〈Yr, f〉

)
(r,Xr, Yr, Zr) dr

+
∫ τ

s

Z+
r

(
σ−1b

)
(r,Xr, Yr, Zr) dr −

∫ τ

s

|Zr|2 dr

−
∫ τ

s

Z+
r dBr.

(1.9)

In particular, thanks to Theorem 0.1, we can find C(1.1), only depending on
Λ, λ and T , such that for all t � s � s′ � τ :

µ(Ys)i + |Ys|2 � µ(Ys′ )i + |Ys′ |2 +
(
1 + µ2

)
C(1.1)

∫ s′

s

dr

+ C(1.1)

∫ s′

s

|Z+
r |2 dr −

∫ s′

s

Z+
r dBr.

(1.10)

From Kobylanski [12], we know that there exists a unique progressively mea-
surable process, denoted by (Y s, Zs)t�s�τ , satisfying:






∃ c(1.1) � 0, P
{
∀ t � s � τ,

∣∣Y s

∣∣ � c(1.1)
}

= 1,

E

[∫ τ

t

∣∣Zs
∣∣2 ds

]
<∞,

(1.11)

as well as the following BSDE:

Y s = µ θi(τ,Xτ ) + |θ(τ,Xτ )|2

+ (1 + µ2)C(1.1)

∫ τ

s

dr + C(1.1)

∫ τ

s

∣∣Zr
∣∣2 dr −

∫ τ

s

Zr dBr.
(1.12)
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From the comparaison principle stated in Kobylanski [12], we deduce that:

µ θi(t, x) + |θ(t, x)|2 � Y t. (1.13)

Let us now prove the following lemma:

Lemma 1.1. The following Novikov condition is satisfied:

E

[
exp

((
C(1.1)

)2

2

∫ τ

t

∣∣Zr
∣∣2 dr

)]
< +∞. (1.14)

Proof. Let us define for every n ∈ N
∗:

τn = inf
{
t � s � τ,

∫ s

t

∣∣Zr
∣∣2 dr � n

}
, where inf ∅ = τ . (1.15)

Therefore, modifying c(1.1) if necessary, we deduce from (1.12):

∀n ∈ N
∗,

(
C(1.1)

)2

2

∫ τn

t

∣∣Zr
∣∣2 dr � c(1.1) +

C(1.1)

2

∫ τn

t

Zr dBr. (1.16)

Hence, modifying once again c(1.1) if necessary, we have for every n ∈ N
∗:

E

[
exp

((
C(1.1)

)2

2

∫ τn

t

∣∣Zr
∣∣2 dr

)]

� c(1.1) E

[
exp

(
C(1.1)

2

∫ τn

t

Zr dBr −
(
C(1.1)

)2

4

∫ τn

t

∣∣Zr
∣∣2 dr

+

(
C(1.1)

)2

4

∫ τn

t

∣∣Zr
∣∣2 dr

)]
.

(1.17)

From the Cauchy–Schwartz inequality, we deduce that for every n ∈ N
∗:

E

[
exp

((
C(1.1)

)2

2

∫ τn

t

∣∣Zr
∣∣2 dr

)]

� c(1.1) E

[
exp

(
C(1.1)

∫ τn

t

Zr dBr −
(C(1.1))2

2

∫ τn

t

∣∣Zr
∣∣2 dr

)]1/2

× E

[
exp

((
C(1.1)

)2

2

∫ τn

t

∣∣Zr
∣∣2 dr

)]1/2

.

(1.18)

Let us recall that:

E

[
exp

(
C(1.1)

∫ τn

t

Zr dBr −
(C(1.1))2

2

∫ τn

t

∣∣Zr
∣∣2 dr

)]
= 1. (1.19)

Using the Beppo-Levi theorem, we complete the proof of Lemma 1.1. 
�
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Let us return to the proof of Theorem 1.1. Let us put:

∀ t � s � T, Bs = Bs − C(1.1)

∫ s∧τ

t

Z
∗
r dr. (1.20)

From the Girsanov theorem, there exists a probability measure P such that
(Bs)t�s�T is an (Fs)t�s�T -Brownian motion. The probability measure P is
given by:

dP

dP

∣∣∣∣
Fs

= exp
(
C(1.1)

∫ s∧τ

t

Zr dBr −
(
C(1.1)

)2

2

∫ s∧τ

t

∣∣Zr
∣∣2 dr

)
, (1.21)

for all t � s � T . We denote by E the expectation under P. Hence, noting
from (1.12) that (

∫ s∧τ
t

Zr dBr)t�s�T is a bounded martingale, we deduce:

Y t = E
[
µ θi(τ,Xτ ) + |θ(τ,Xτ )|2 +

(
1 + µ2

)
C(1.1)(τ − t)

]
. (1.22)

Hence, from (1.13), we deduce:

µ θi(t, x) + |θ(t, x)|2

� E
[
µ θi(τ,Xτ ) + |θ(τ,Xτ )|2 +

(
1 + µ2

)
C(1.1)(τ − t)

]
. (1.23)

Choose now µ = 10QM0, where M0 is given by Theorem 0.1.
Consider (t0, x0) ∈ [0, T [×R

P . Let us then adopt the following notations:

∀ 0 � r � R0(t0), Q(r) = Q(t0,x0)(r). (1.24)

Moreover, fix R > 0, such that t0 + 4R2 � T , and choose i as the integer of
{1, . . . , Q} such that:

osc
Q(2R)

(θi) � osc
Q(2R)

(θ�), � ∈ {1, . . . , Q}. (1.25)

We put:





for every (t, x) ∈ Q(2R),

w+(t, x) =
(
µ θi + |θ|2

)
(t, x), w−(t, x) =

(
−µ θi + |θ|2

)
(t, x),

and M+ = maxQ(2R)(w+), M− = maxQ(2R)(w−).

(1.26)

From the inequality (13.25) of Chapter 13 of Gilbarg and Trudinger [8], we
know that for every (s, y) ∈ Q(2R),

M+ − w+(s, y) + M− − w−(s, y) � 1
2

(
osc
Q(2R)

(w+) ∨ osc
Q(2R)

(w−)
)
. (1.27)

Hence, from (1.27), we have (note that both inequalities may be true at the
same time):
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µP+1(B+) � 1
2
µP+1

(
Q(2R)

)
or µP+1(B−) � 1

2
µP+1

(
Q(2R)

)
, (1.28)

where:





B+ =
{

(s, y) ∈ Q(2R), M+ − w+(s, y) � 1
4

osc
Q(2R)

(w+)
}
,

B− =
{

(s, y) ∈ Q(2R), M− − w−(s, y) � 1
4

osc
Q(2R)

(w−)
}
.

(1.29)

Let us assume that (1.28) holds with +.
Fix (t, x) ∈ Q(R), and put:






γ = inf
{
s � t, (s,Xs) ∈ B+

}
,

τ2R = inf
{
s > t, (s,Xs) ∈ ∂Q(2R)

}
,

τ = γ ∧ τ2R,

(1.30)

where X is given by (1.4).
Hence, from the inequality (1.23) applied to µ and to the stopping time

τ defined in (1.30), there exists a constant C(1.2), only depending on Λ, λ, Q
and T , such that:

w+(t, x) � M+
P{τ2R < γ}

+
(
M+ − 1

4
osc
Q(2R)

(w+)
)

P{γ � τ2R}+ C(1.2)R2.
(1.31)

Hence,

w+(t, x) � M+ − 1
4

osc
Q(2R)

(w+) P{γ � τ2R}+ C(1.2)R2. (1.32)

We have to estimate P{γ � τ2R}. From Krylov and Safonov [15], we know
that there exists η(1.1) > 0, only depending on λ, Λ and P , such that:

P{γ � τ2R} � η(1.1). (1.33)

Noting from (1.20) and (1.21) that, for all t � s � T ,

dP

dP

∣∣∣∣
Fs

= exp
(
−C(1.1)

∫ s∧τ

t

Zr dBr −
(
C(1.1)

)2

2

∫ s∧τ

t

∣∣Zr
∣∣2 dr

)
, (1.34)

we have:

P{γ � τ2R} = E

[
exp

(
−C(1.1)

∫ τ

t

Zr dBr

− 1
2
(
C(1.1)

)2
∫ τ

t

∣∣Zr
∣∣2 dr

)
1{γ�τ2R}

]
. (1.35)
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Now, applying Proposition 2.1 of Kobylanski [12] to estimate the process Y
in (1.12), we deduce that there exists a constant C(1.3), only depending on Λ,
λ, Q and T , such that: ∣∣∣∣

∫ τ

t

Zr dBr

∣∣∣∣ � C(1.3). (1.36)

This proves that there exists η(1.2) > 0, only depending on Λ, λ, P , Q and T ,
such that:

P{γ � τ2R} � η(1.2). (1.37)

Hence, from (1.32), we can find 0 < η(1.3) < 1, only depending on Λ, λ, P , Q
and T , such that:

osc
Q(R)

(w+) �
(
1− η(1.3)

)
osc
Q(2R)

(w+) + C(1.2)R2. (1.38)

In the same way, applying (1.23) to −µ and to τ , we prove that (1.38) holds
with w− instead of w+ as soon as (1.28) holds with −.

From Lemma 13.5 of Chapter 13 of Gilbarg and Trudinger [8], we conclude
that there exist two constants C(1.4) and α > 0, only depending on Λ, λ, P ,
Q and T , such that for every R � R0(t0):

∀ � ∈ {1, . . . , Q}, osc
Q(R)

(θ�) � C(1.4)

((
R

R0(t0)

)α
w0 + RR0(t0)

)
, (1.39)

where:

w0 = max
{

osc
Q(R0(t0))

(
ε µ θ� + |θ|2

)
, � = 1, . . . , Q, ε = −1, 1

}
. (1.40)

This completes the proof of Theorem 1.1. 
�

Let us now deduce from the former theorem the following interior estimate
of Hölder type of the function θ:

Theorem 1.2. There exists a constant Γ (1.2), only depending on Λ, λ, P , Q
and T , such that for every t ∈ [0, T [, the following inequality holds for all
(r, x), (s, y) ∈ [0, t]× R

P :

|θ(s, y)− θ(r, x)| � Γ (1.2)

(T − t)α/2
(
|y − x|α + |s− r|α/2

)
, (1.41)

where α is given by Theorem 1.1.

Proof. Consider t ∈ [0, T [ as well as (r, x), (s, y) ∈ [0, t]× R
P , r � s.

Let us assume for the moment that maxi=1,...,P |yi − xi|2 � T − t.
Letting R1 = maxi=1,...,P |yi−xi|, and noting that R2

1 � T − r, we deduce
from Theorem 0.1 and Theorem 1.1 applied to the cylinder Q(r,x)(R1):

|θi(r, y)− θi(r, x)| � Γ (1.1)

(
C(1.5) |y − x|α

(T − t)α/2
+
√
T − r |y − x|

)
, (1.42)
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for every i ∈ {1, . . . , Q}, where C(1.5) only depends on Λ, Q and T .
Now, letting R2

2 = s − r, and noting that R2
2 � T − r, we deduce from

Theorem 1.1 applied to the cylinder Q(r,y)(R2):

|θi(s, y)− θi(r, y)| � Γ (1.1)

(
C(1.5)

( s− r

T − t

)α/2
+
√
T − r

√
s− r

)
, (1.43)

for every i ∈ {1, . . . , Q}. Summing (1.42) and (1.43), we deduce that there
exists a constant Γ (1.2), only depending on Λ, λ, P , Q and T , such that (1.41)
holds as soon as maxi=1,...,P |yi − xi|2 � T − t.

Modifying Γ (1.2) if necessary, we prove thanks to Theorem 0.1 that it still
holds for all (r, x), (s, y) ∈ [0, t]× R

P . 
�

Making use of the assumption (A.3), we deduce the following global esti-
mate of Hölder type of the solution θ:

Theorem 1.3. There exists a constant Γ (1.3), only depending on L, Λ, λ, P ,
Q and T , such that:

∀ (t, x), (s, y) ∈ [0, T ]× R
P ,

|θ(s, y)− θ(t, x)| � Γ (1.3)
(
|x− y|α′

+ |t− s|α′/2), (1.44)

where α′ = α ∧ α0.

Proof. Consider (t, x), (s, y) ∈ [0, T ]× R
P , such that t � s.

Following the notations of Theorem 1.1, we assume for the moment that
there exists a constant C(1.6), only depending on L, Λ, Q and T , such that:

w0(t, x) � C(1.6)
(
R0(t)

)α0
. (1.45)

Then, letting R0 = R0(t) and Q(R) = Q(t,x)(R), we have from Theorem 0.1
and Theorem 1.1:

∀ 0 � R � R0, ∀ i ∈ {1, . . . , Q},
osc
Q(R)

(θi) � Γ (1.1)
(
C(1.6)Rα

′
Rα0−α′

0 + RR0

)
. (1.46)

In particular, following the proof of Theorem 1.2, we deduce that there exists
a constant Γ (1.3), only depending on L, Λ, λ, P , Q and T , such that (1.44)
holds as soon as maxi=1,...,P |xi − yi|2 � T − t.

Let us assume that maxi=1,...,P |xi − yi|2 > T − t. Then, applying (1.44)
a first time to the couples (t, x) and (T, x), and a second one to the couples
(s, y) and (T, y), we deduce:

|θ(t, x) − θ(s, y)|
� |θ(t, x)−H(x)| + |H(x)−H(y)|+ |θ(s, y)−H(y)|
� 2Γ (1.3)(T − t)α

′/2 + L|x− y|α0

� 2Γ (1.3)|x− y|α′
+ L|x− y|α0 .

(1.47)
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Modifying Γ (1.3) if necessary, we deduce that (1.44) holds as soon as |x−y| � 1.
Thanks to Theorem 0.1, we show that it actually holds for all (s, y), (t, x) ∈
[0, T ]× R

P . 
�
Hence, we just have to prove the following result:

Lemma 1.2. There exists a constant C(1.6), only depending on L, Λ, Q and
T , such that for every (t, x) ∈ [0, T [× R

P :

w0(t, x) � C(1.6)
(
R0(t)

)α0
. (1.48)

Proof. Consider (t, x) ∈ [0, T ]× R
P . We recall that (Xs)t�s�T is given by:

Xs = x +
∫ s

t

σ
(
r,Xr, θ(r,Xr)

)
dBr. (1.49)

We also recall that, for every n ∈ N, the process (Xs, Ys, Zs)t�s�tn satisfies
the following FBSDE:






Xs = x +
∫ s

t

b(r,Xr, Yr, Zr) dr +
∫ s

t

σ(r,Xr, Yr) dBn
r ,

Ys = θ(tn, Xtn) +
∫ tn

s

f(r,Xr, Yr, Zr) dr −
∫ tn

s

Zr dBn
r ,

for all s ∈ [t, tn], and E
n

[∫ tn

t

(
|Xs|2 + |Ys|2 + |Zs|2

)
ds

]
<∞.

(1.50)

where for every n ∈ N, tn, Bn and E
n have been defined in (0.11), (0.12) and

(0.13).
Then, thanks to Theorem 0.1 and to the inequality (0.15), we prove that

there exists a constant c(1.3), only depending on Λ and T such that:

∀n ∈ N, E
n

[∫ tn

t

|Zs|2 ds
]

� c(1.3). (1.51)

Moreover, from Itô’s formula applied to the process (|Ys−H(x)|2)t�s�tn , there
exists a constant C(1.7), only depending on Λ and T such that for every n ∈ N:

|θ(t, x) −H(x)|2 � C(1.7)
(
E
n
[
|θ(tn, Xtn)−H(x)|2

]
+ (T − t)

)

� C(1.7)
(
E
n
[
|H(XT )−H(x)|2

]

+ E
n
[
1{tn<T}|θ(tn, Xtn)−H(x)|2

]
+ (T − t)

)
.

(1.52)

Hence, from Assumption (A) and thanks to Theorem 0.1, there exists a con-
stant C(1.8) (whose value may change from one inequality to another), only
depending on L, Λ and T , such that for every n ∈ N

∗:

|θ(t, x) −H(x)|2

� C(1.8)
(
E
n
[
|XT − x|2α0

]
+ P

n{tn < T }+ (T − t)
)

� C(1.8)

(
E
n
[
|XT − x|2

]α0 +
1
n2

E
n

[
sup
t�s�T

|Xs − x|2
]

+ (T − t)
)
.

(1.53)
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Noting that (Xs)t�s�T satisfies, for all s ∈ [t, T ],

Xs = x +
∫ s∧tn

t

b(r,Xr, Yr, Zr) dr +
∫ s

t

σ(r,Xr, Yr) dBn
r , (1.54)

we deduce from Theorem 0.1 and (1.53) that for every n ∈ N
∗:

|θ(t, x) −H(x)|2 � C(1.8)
(

1 +
1
n2

)
(T − t)α0 . (1.55)

Hence, letting n → +∞ and applying the property (A.3), we have for every
(s, y) ∈ Q(t,x)(R0(t)):

|θ(t, x) − θ(s, y)| � C(1.8)(T − t)α0/2 = C(1.8)
(
R0(t)

)α0
. (1.56)

From the definition of w0, this completes the proof of Lemma 1.2. 
�

2 Estimates of the Gradient of the Solution

This section is devoted to the proof of the gradient estimate required in the
article of Delarue [6] and proved in Chapter VII of Ladyzhenskaya et al.
[18]. To this aim, we now assume that the function θ belongs to the space
C1,2([0, T ]× R

P ,RQ) ∩ L∞([0, T ]× R
P ,RQ) and that the coefficients satisfy

the followings:

Assumption (A’). We say that the functions b, f , H and σ satisfy Assump-
tion (A’) if there exist five constants γ > 0, k, L, λ > 0 and Λ, such that they
satisfy Assumption (A) with respect to the constants α0 = 1, L, λ and Λ, as
well as the following properties:

(A.5) ∀ (t, x, y) ∈ [0, T ]× R
P × R

Q, ∀ (x′, y′) ∈ R
P × R

Q,

|σ(t, x′, y′)− σ(t, x, y)| � k
(
|x′ − x|+ |y′ − y|

)
.

(A.6) The function σ is differentiable with respect to x and y and its deriva-
tives with respect to x and y are γ-Hölder in x and y, uniformly in t.

In particular, from the choice of α0, the function H is L-Lipschitzian.
Moreover, the function θ satisfies Theorems 0.1, 1.2 and 1.3 with α′ = α, α
being given by Theorem 1.1.

Representation of the solution θ. Consider a complete probability space
(Ω,F ,P), a filtration (Ft)0�t�T satisfying the usual conditions, and an
(Ft)0�t�T -Brownian motion, denoted by (Bt)0�t�T .

Moreover, for a fixed real m > 0, consider on the one hand a bounded
open set O ⊂ [0, T ]× R

P such that:



306 François Delarue

[0, T ]×BP

(
0,m +

√
T
)
⊂ O, (2.0.1)

and on the other one a function ϕ ∈ C1,2([0, T ] × R
P ,RQ), with compact

support, such that:

∀ (t, x) ∈ O, ϕ(t, x) = θ(t, x).

Hence, thanks to Assumption (A’), we can consider, for every (t, x) ∈
[0, T ]×R

P , the unique solution, still denoted by (Xt,x
s )t�s�T , of the following

equation:

∀ s ∈ [t, T ], Xt,x
s = x +

∫ s

t

σ
(
r,Xt,x

r , ϕ(r,Xt,x
r )

)
dBr. (2.0.2)

Thus, following Proposition 0.1, for every (t, x) ∈ [0, T ] × R
P , for every

(Fs)t�s�T stopping time τ satisfying:

P

{
sup
t�s�τ

|Xt,x
s | � m +

√
T

}
= 1, (2.0.3)

the process (Xt,x
s , Y t,x

s , Zt,xs )t�s�τ , given by, for all t � s � T ,

Y t,x
s = ϕ(s,Xt,x

s ), Zt,xs = ∇xϕ(s,Xt,x
s )σ(s,Xt,x

s , Y t,x
s ), (2.0.4)

satisfies the following FBSDE:





Xt,x
s = x +

∫ s

t

σ(r,Xt,x
r , Y t,x

r ) dBr,

Y t,x
s = ϕ(τ,Xt,x

τ ) +
∫ τ

s

e(r,Xt,x
r , Y t,x

r , Zt,xr ) dr −
∫ τ

s

Zt,xr dBr,

for all s ∈ [t, τ ], and E

[∫ τ

t

(
|Xt,x

s |2 + |Y t,x
s |2 + |Zt,xs |2

)
ds

]
<∞.

(2.0.5)

Remark 2.1. Note that, for all t � s � τ ,

Y t,x
s = θ

(
s,Xt,x

s

)
, Zt,xs = ∇xθ

(
s,Xt,x

s

)
σ
(
s,Xt,x

s , Y t,x
s

)
. (2.0.6)

This explains why we have kept the notations of Sect. 1.

Let us also recall from Theorem 4.6.5 of Chapter IV of Kunita [17] that,
under Assumption (A’), for almost every ω ∈ Ω, the map (t, x) �→ Xt,x ∈
C([0, T ]× R

P ,RP ) is differentiable with respect to x. Moreover, denoting by
∂iX

t,x the partial derivative with respect to xi, the following equation holds
for every i ∈ {1, . . . , P}:

∂iX
t,x
s = ei +

∫ s

t

(
σ′x(r,Xt,x

r , Y t,x
r ) ∂iXt,x

r

+
(
σ′y∇xϕ

)
(r,Xt,x

r , Y t,x
r ) ∂iXt,x

r

)
dBr, (2.0.7)
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for all s ∈ [t, T ], and the map (t, x) �→ ∇xXt,x = (∂1X
t,x, . . . , ∂PX

t,x) ∈
C([0, T ]×R

P ,RP×P ) is, thanks to Kolmogorov’s Lemma, almost surely con-
tinuous and satisfies for every compact set κ ⊂ [0, T ]× R

P :

∀ p � 1, E

[
sup

(t,x)∈κ

(
sup
t�s�T

|∇xXt,x
s |p

)]
<∞. (2.0.8)

Finally, we adopt the following notations:

Notations. For every (t, x) ∈ [0, T ]×R
P and for every 0 < R �

√
T − t, let:

C(t,x)(R) =
[
t, t + R2

[
×BP (x,R). (2.0.9)

Fix now for the whole section (t0, x0) ∈ [0, T [ × BP (0,m) and 0 < R �
(T − t0)1/2. Set:

{
C = C(t0,x0)(R),

∀ (t, x) ∈ C, τ t,x = τ t,xC = inf{s � t, (s,Xt,x
s ) �∈ C}.

(2.0.10)

Note from the choice of x0 that:

∀ 0 � R �
√
T − t0, C ⊂ [0, T ]×BP

(
0,m +

√
T
)
. (2.0.11)

Moreover, consider also t0 � u0 � u � t0 + R2, z ∈ R
P and - > 0 such that

- + |z − x0| � R. Set for every n ∈ N
∗:

{
D = [u0, u[×BP (z, -),

Dn = [u0, u0 + (1− 1/n)(u− u0)[×BP
(
z, (1− 1/n)-

)
.

(2.0.12)

Note that for every n ∈ N
∗, Dn ⊂ Dn+1 ⊂ D ⊂ C.

Finally, let for every (t, x) ∈ [0, T ]× R
P and for every n ∈ N

∗:
{
ζt,x = inf{s � t, (s,Xt,x

s ) �∈ D},
ζn,t,x = inf{s � t, (s,Xt,x

s ) �∈ Dn}.
(2.0.13)

Actually, this section is divided into three parts. In the first one, we establish
basic estimates of the processes Z and ∇xX . The second one is devoted to the
proof of the integration by parts formula required to estimate the gradient of
θ. This estimate is given in the third and last part of this section.

2.1 Estimates of Z and ∇xX

This first subsection is devoted to the proof of basic estimates of the processes
Z and ∇xX .
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Lemma 2.1. There exists a constant Γ (2.1), only depending on Λ and T ,
such that for every 0 < R �

√
T − t and for every (t, x) ∈ C:

∀ s > t, E

[ ∣∣Xt,x
s∧τ t,x − x

∣∣2

(s ∧ τ t,x − t)1/2

]
� Γ (2.1). (2.1.1)

Proof. Consider 0 < R �
√
T − t and (t, x) ∈ C. Note that we omit to specify

the dependence upon (t, x) of Xt,x and τ t,x.
Let ε > 0. Considering the semimartingale

(
|Xs − x|2

ε + (s− t)1/2

)

t�s�T
,

we have from Itô’s formula:

∀ s > t, E

[
|Xs∧τ − x|2

ε + (s ∧ τ − t)1/2

]
� E

[∫ s∧τ

t

|σ(r,Xr, Yr)|2
ε + (r − t)1/2

dr
]
. (2.1.2)

Hence, applying Theorem 0.1 and letting ε→ 0, we complete the proof. 
�

Proposition 2.1. There exists three constants 0 < β < 1, c(2.1) and Γ (2.2),
only depending on L, Λ, λ, P , Q and T , such that for every R � c(2.1) and
for every (t, x) ∈ C:

E

[∫ τ t,x

t

|Zt,xs |2
(s− t)β

ds
]

� Γ (2.2). (2.1.3)

Proof. Consider 0 < R �
√
T − t and (t, x) ∈ C. Once again, we omit to

specify the dependence of Xt,x, Y t,x, Zt,x and τ t,x upon (t, x).
Let 0 < β < 1 and ε > 0. Considering the semimartingale

(
|Ys − Yt|2
ε + (s− t)β

)

t�s�τ
,

we have from Itô’s formula:

E

[∫ τ

t

|Zs|2
ε + (s− t)β

ds
]

� E

[
|Yτ − Yt|2
ε + (τ − t)β

]

+ 2 E

[∫ τ

t

〈Ys − Yt, e(s,Xs, Ys, Zs)〉
ε + (s− t)β

ds
]

+ E

[∫ τ

t

|Ys − Yt|2
(s− t)1−β(ε + (s− t)β)2

ds
]
.

(2.1.4)

From Theorem 1.3 and the definition of τ , we know that there exists a constant
C(2.1), only depending on L, λ, Λ, P , Q and T , such that:

∀ t � s � τ, |Ys − Yt| � C(2.1)Rα. (2.1.5)
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Hence, again from Theorems 0.1 and 1.3, there exists a constant C(2.2), only
depending on L, λ, Λ, P , Q and T , such that:

E

[∫ τ

t

|Zs|2
ε + (s− t)β

ds
]

� C(2.2)

(
E

[
(τ − t)α + |Xτ − x|2α

ε + (τ − t)β

]

+ Rα E

[∫ τ

t

1 + |Zs|2
ε + (s− t)β

ds
]

+ E

[∫ τ

t

(s− t)α + |Xs − x|2α
(s− t)1−β(ε + (s− t)β)2

ds
])

.

(2.1.6)

Choose:
β =

α

4
. (2.1.7)

Hence, modifying C(2.2) if necessary, we deduce:

E

[∫ τ

t

|Zs|2
ε + (s− t)β

ds
]

� C(2.2)

(
1 + E

[
|Xτ − x|2

ε + (τ − t)1/4

]α

+ Rα E

[∫ τ

t

|Zs|2
ε + (s− t)β

ds
]

+
∫ t0+R

2

t

1
(s− t)1−α/4

E

[
|Xs∧τ − x|2

(s ∧ τ − t)1/2

]α
ds

)
.

(2.1.8)

Choosing a small enough R, and letting ε→ 0, we complete the proof. 
�

Proposition 2.2. For every p � 1, there exist two constants c
(2.2)
p and Γ

(2.3)
p ,

only depending on k, L, λ, Λ, p, P , Q and T , such that for every R � c
(2.2)
p

and for every (t, x) ∈ C:

E

[
sup

t�s�τ t,x

|∇xXt,x
s |2p

]
� Γ (2.3)

p . (2.1.9)

Proof. We keep the notations of the statement, but we omit to specify the
dependence upon (t, x) of Xt,x, Y t,x, Zt,x and τ t,x.

From (2.0.7), we know that for every i ∈ {1, . . . , P}:

∀ s ∈ [t, T ], ∂iXs = ei +
∫ s

t

(
σ′x(r,Xr, Yr) ∂iXr

+
(
σ′yZrσ

−1
)
(r,Xr, Yr) ∂iXr

)
dBr. (2.1.10)

Consider µ > 0 and i ∈ {1, . . . , P}. Thanks to the system (2.0.5), we deduce
from Itô’s formula that for every t � s � τ :
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d
(
exp(−µ |Ys − Yt|2) |∂iXs|2p

)
= exp

(
−µ |Ys − Yt|2

)

×
{
|∂iXs|2p

((
2µ 〈Ys − Yt, e〉+ 2µ2

∣∣ZTs (Ys − Yt)
∣∣2 − µ |Zs|2

)
ds

− 2µ
〈
Ys − Yt, Zs dBs

〉)

+ p |∂iXs|2(p−2)
(

2 |∂iXs|2
〈
∂iXs,

(
(σ′x + σ′yZsσ

−1) ∂iXs

)
dBs

〉

+ |∂iXs|2
∣∣(σ′x + σ′yZsσ

−1
)
∂iXs

∣∣2 ds

+ 2 (p− 1)
∣∣((σ′x + σ′yZsσ

−1) ∂iXs

)T
∂iXs

∣∣2 ds

− 4µ |∂iXs|2
〈
ZTs (Ys − Yt),

(
(σ′x + σ′yZsσ

−1)∂iXs

)T
∂iXs

〉
ds

)}
.

(2.1.11)

where, to simplify the notations, we have written e, σ′x, σ
′
y and σ−1 instead of

e(s,Xs, Ys, Zs), σ′x(s,Xs, Ys), σ′y(s,Xs, Ys) and σ−1(s,Xs, Ys).
Hence, thanks to (2.0.8), we deduce that for every s ∈ [t, T ]:

E
[
exp

(
−µ|Ys∧τ − Yt|2

)
|∂iXs∧τ |2p

]

+ µE

[∫ s∧τ

t

exp
(
−µ |Yr − Yt|2

)
|∂iXr|2p |Zr|2 dr

]

= 1 + E

[∫ s∧τ

t

dr

(
exp

(
−µ |Yr − Yt|2

)

×
{
|∂iXr|2p

(
2µ 〈Yr − Yt, e〉+ 2µ2

∣∣ZTr (Yr − Yt)
∣∣2
)

+ p |∂iXr|2(p−2)
(
|∂iXr|2

∣∣(σ′x + σ′yZrσ
−1

)
∂iXr

∣∣2

+ 2(p− 1)
∣∣((σ′x + σ′yZrσ

−1) ∂iXr

)T
∂iXr

∣∣2

− 4µ |∂iXr|2
〈
ZTr (Yr − Yt),

(
(σ′x + σ′yZrσ

−1) ∂iXr

)T
∂iXr

〉)})]
.

(2.1.12)

Hence, from Theorem 0.1 and (2.1.5), there exists a constant C
(2.3)
p , only

depending on k, L, λ, Λ, p, P , Q and T , such that for every s ∈ [t, T ]:

E
[
exp

(
−µ |Ys∧τ − Yt|2

)
|∂iXs∧τ |2p

]

+ µE

[∫ s∧τ

t

exp
(
−µ|Yr − Yt|2

)
|∂iXr|2p |Zr|2 dr

]

� 1 + C(2.3)
p E

[∫ s∧τ

t

exp(−µ |Yr − Yt|2) |∂iXr|2p

×
((

1 + µ2R2α
)

+
(
1 + µRα + µ2R2α

)
|Zr|2

)
dr

]
.

(2.1.13)

Choose µ = 3C(2.3)
p as well as R such that:
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µRα + µ2R2α � 1. (2.1.14)

Then, for every s ∈ [t, T ]:

E

[
exp

(
−µ|Ys∧τ − Yt|2

)
|∂iXs∧τ |2p

]

+ C(2.3)
p E

[∫ s∧τ

t

exp
(
−µ |Yr − Yt|2

)
|∂iXr|2p |Zr|2 dr

]

� 1 + 2C(2.3)
p E

[∫ s∧τ

t

exp
(
−µ|Yr − Yt|2

)
|∂iXr|2p dr

]
.

(2.1.15)

Hence, from Gronwall’s lemma, there exist two constants C
(2.4)
p (whose value

may change from one inequality to another) and η
(2.1)
p , only depending on k,

L, λ, Λ, p, P , Q and T , such that for every R � η
(2.1)
p :

E

[
exp

(
−µ |Ys∧τ − Yt|2

)
|∂iXs∧τ |2p

]

+ E

[∫ s∧τ

t

(
exp

(
−µ |Yr − Yt|2

)
|∂iXr|2p|Zr|2

)
dr

]
� C(2.4)

p , (2.1.16)

for all s ∈ [t, T ]. Thanks to Theorem 0.1, we deduce that (2.1.16) holds with
µ = 0.

Hence, applying Doob’s inequalities to the martingale (∂iXs∧τ )t�s�T , we
deduce that for every R � η

(2.1)
p :

E

[
sup
t�s�τ

|∂iXs|2p
]

� C(2.4)
p . 
� (2.1.17)

Under the notations (2.0.12) and (2.0.13), we claim that:

Lemma 2.2. For every m > 0, there exist two constants c
(2.3)
m and Γ

(2.4)
m ,

only depending on k, L, λ, Λ, m, P , Q and T , such that for every R � c
(2.3)
m :

∀ (t, x) ∈ D,

E

[
sup

t�s�ζt,x

∣∣∇xXt,x
s − I

∣∣m
]

� Γ (2.4)
m (u− t)

αm
2(P +1) -

αmP
2(P+1) . (2.1.18)

Proof. Consider R � (c(2.2)2m ∨ 1) as well as (t, x) ∈ D. We omit to specify the
dependence upon (t, x) of ζt,x and Xt,x.

From (2.0.7), we know that there exists a constant C
(2.5)
m , only depending

on k, λ, m and P , such that:
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E

[
sup
t�s�ζ

|∇xXs − I|m
]

� C(2.5)
m E

[
sup
t�s�ζ

|∇xXs|m
(∫ ζ

t

(
1 + |Zr|2

)
dr

)m/2]

� C(2.5)
m E

[
sup
t�s�ζ

|∇xXs|2m
]1/2

E

[(∫ ζ

t

(1 + |Zr|2) dr
)m]1/2

.

(2.1.19)

Let us now estimate the quantity E[(
∫ ζ
t
|Zr|2 dr)m]. From Itô’s formula, we

know that:

∫ ζ

t

|Zs|2 ds = |Yζ − Yt|2

+ 2
∫ ζ

t

〈Ys − Yt, e(s,Xs, Ys, Zs)〉ds− 2
∫ ζ

t

〈Ys − Yt, Zs dBs〉. (2.1.20)

Therefore, thanks to Theorem 0.1 and to (2.1.5), there exists a constant C(2.6)
m

(whose value may change from one inequality to another), only depending on
L, λ, Λ, m, P , Q and T , such that:

E

[(∫ ζ

t

|Zs|2 ds
)m]

� C(2.6)
m

(
E

[
sup
t�s�ζ

|Ys − Yt|2m
]

+ E
[
(ζ − t)m

]

+ Rαm E

[(∫ ζ

t

|Zs|2 ds
)m]

+ E

[
sup
t�s�ζ

|Ys − Yt|2m
]1/2

E

[(∫ ζ

t

|Zs|2 ds
)m]1/2

)
.

(2.1.21)

Hence, we have for a small enough R:

E

[(∫ ζ

t

|Zs|2 ds
)m]

� C(2.6)
m

(
E

[
sup
t�s�ζ

|Ys − Yt|2m
]

+ E
[
(ζ − t)m

])
. (2.1.22)

Therefore, we deduce from Theorem 1.3:

E

[(∫ ζ

t

|Zs|2 ds
)m]

� C(2.6)
m E

[
(ζ − t)αm

]
. (2.1.23)

Let us now estimate the quantity E[(ζ − t)αm]:

Lemma 2.3. For every N ∈ N
∗
, there exists a constant Γ

(2.5)
N , only depend-

ing on λ, Λ, N , P , Q and T , such that:

∀ t � s � ζ, E
[
(ζ − s)N

∣∣ Fs
]

� Γ
(2.5)
N (u− t)N/(P+1)-NP/(P+1). (2.1.24)
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Proof. From Theorem 4, Paragraph 2, Chapter II of Krylov [13], we know
that the property (2.1.24) holds with N = 1. Now, note that for every N � 1:

E
[
(ζ − s)N+1

∣∣ Fs
]

= (N + 1) E

[∫ ζ

s

(ζ − r)N dr
∣∣∣∣ Fs

]

= (N + 1) E

[∫ ζ

s

E
[
(ζ − r)N

∣∣ Fr
]

dr
∣∣∣∣ Fs

]
,

(2.1.25)

for all t � s � ζ. Using an induction, we complete the proof. 
�

Let us complete the proof of Lemma 2.2. Let us define N as the largest
integer less than or equal to αm. From the inequality

E
[
(ζ − t)αm

]
� E

[
(ζ − t)N+1

]αm/(N+1)
, (2.1.26)

(2.1.23) and Lemma 2.3, we deduce the result.

2.2 Properties of the Operator Associated to X

This subsection is devoted to the study of harmonic functions with respect to
the operator

L =
∂

∂t
+

1
2

P∑

i,j=1

ai,j
(
. , . , ϕ( . , . )

) ∂2

∂xi ∂xj
,

and in particular aims to present the proof of the integration by parts formula
that we will use to estimate the gradient of the solution θ. As mentioned in
the introduction, this formula is basically due in a preliminary version to
Bismut [2] and Elworthy and Li [7] and in its final form to Thalmaier [26].
Hence, our main work is to adapt the proof given in the former article to the
case of parabolic operators. Nevertheless, as announced in the introduction,
note that we also show how this technique permits to establish the partial
differentiability of the function u given in (0.1).

Keeping the notations introduced in (2.0.12) and (2.0.13), we firstly recall
the following result (see also Thalmaier [26]):

Proposition 2.3. Let (t, x) ∈ D and � be defined by:

∀ (s, y) ∈ D, �(s, y) =
(
-2 − |y − z|2

)
(u− s). (2.2.1)

Moreover, set:

∀ t � s � ζt,x, Σt,x(s) =
∫ s

t

�−2
(
r,Xt,x

r

)
dr, (2.2.2)

then,
Σt,x

(
ζt,x

)
= +∞. (2.2.3)
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Proof. Fix (t, x) ∈ D. We omit to specify the dependence upon (t, x) of Xt,x,
ζt,x, ζn,t,x and Σt,x.

We define:
{
∀ 0 � S � Σ(ζ), T (S) = inf{s � t, Σ(s) � S},
∀S > Σ(ζ), T (S) = ζ.

(2.2.4)

Thus, for every nonnegative real S, T (S) is a stopping time less than ζ.
Let n ∈ N

∗. From Itô’s formula, we have for every S � 0:

E
[
�−1

(
T (S) ∧ ζn, XT (S)∧ζn

)]
− �−1(t, x)

= E

[∫ T (S)∧ζn

t

L�−1(r,Xr) dr
]

= E

[∫ T (S)

t

1{S�Σ(ζ)} 1[t,ζn](r)L�−1(r,Xr) dr
]

+ E

[∫ T (S)

t

1{S>Σ(ζ)} 1[t,ζn](r)L�−1(r,Xr) dr
]

= E

[∫ S

0

1{S�Σ(ζ)} 1[t,ζn]

(
T (r)

)(
�2L�−1

)(
T (r), XT (r)

)
dr

]

+ E

[∫ Σ(ζ)

0

1{S>Σ(ζ)} 1[t,ζn]

(
T (r)

)(
�2L�−1

)(
T (r), XT (r)

)
dr

]
.

(2.2.5)

Noting that there exists a constant C(2.7) (whose value may change from one
inequality to another), only depending on Λ and T , such that:

∀ (s, y) ∈ D,
(
�2L�−1

)
(s, y) � C(2.7)�−1(s, y), (2.2.6)

we deduce that: ∀n ∈ N
∗, ∀S � 0,

E
[
�−1

(
T (S) ∧ ζn, XT (S)∧ζn

)]

� �−1(t, x) + C(2.7)

∫ S

0

E
[
�−1

(
T (r) ∧ ζn, XT (r)∧ζn

)]
dr. (2.2.7)

Hence, from Gronwall’s lemma, we have: ∀n ∈ N
∗, ∀S � 0,

E
[
�−1

(
T (S) ∧ ζn, XT (S)∧ζn

)]
� �−1(t, x) exp

(
C(2.7)S

)
. (2.2.8)

Hence, we deduce: ∀n ∈ N
∗, ∀S � 0,

P
{
T (S) � ζn

}
� C(2.7)

n
E
[
�−1

(
T (S) ∧ ζn, XT (S)∧ζn

)]

� C(2.7)

n
�−1(t, x) exp

(
C(2.7)S

)
.

(2.2.9)

From the inclusions {Σ(ζ) < S} ⊂ {T (S) = ζ} ⊂ {T (S) � ζn}, we deduce:
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∀S � 0, P
{
Σ(ζ) < S

}
� 1

n
C(2.7)�−1(t, x) exp

(
C(2.7)S

)
. (2.2.10)

This completes the proof. 
�

Notations. From Proposition 2.3, we can define for every (t, x) ∈ D:

∀S � 0, T t,x(S) = inf{s � t, Σt,x(s) � S}. (2.2.11)

Proposition 2.4. Let (t, x) ∈ D, (c, S) ∈ (R∗+)2 and ν ∈ R
P . Then, setting:

∀ s � t, h0(s) =
∫ s∧T t,x(S)

t

�−2
(
r,Xt,x

r

)
dr, (2.2.12)

as well as:

∀ s � 0, h1(s) =
c

1− e−cS

∫ s

0

e−cr dr =
1

1− e−cS
(1− e−cs), (2.2.13)

the process h given by:

∀ s � t, h(s) = h1

(
h0(s)

)
ν,

is absolutely continuous and satisfies h(t) = 0 and h(s) = ν for s � T t,x(S).
Moreover, for every m � 1:

E

[(∫ ζt,x

t

|ḣr|2 dr
)m]

� (u − t)m−1|ν|2m

×
( c

1− e−cS
)2m 1− e−C

(2.9)
m S

C
(2.9)
m

�−4m+2(t, x). (2.2.14)

where:
C(2.9)
m = 2cm− C(2.8)

m (u− t)-2, (2.2.15)

and C
(2.8)
m is a positive constant only depending on Λ, m and T .

Proof. We keep the notations given in the statement, but as usual we omit to
specify the dependence of Xt,x, ζt,x, ζn,t,x and T t,x upon (t, x).

Let m � 1. We have:

E

[(∫ ζ

t

|ḣr|2 dr
)m]

� (u− t)m−1
E

[∫ ζ

t

|ḣr|2m dr
]

� (u− t)m−1|ν|2m
( c

1− e−cS
)2m

E

[∫ T (S)

t

e−2cmh0(r)�−4m(r,Xr) dr
]

= (u− t)m−1|ν|2m
( c

1− e−cS
)2m

E

[∫ S

0

e−2cmr�−4m+2
(
T (r), XT (r)

)
dr

]

= (u− t)m−1|ν|2m
( c

1− e−cS
)2m

∫ S

0

e−2cmr
E
[
�−4m+2

(
T (r), XT (r)

)]
dr.

(2.2.16)
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Let us now estimate the term E[�−4m+2(T (r), XT (r))] in (2.2.16).
Let us recall that, for all n ∈ N

∗,

ζn = inf
{
s � t, |Xs − z| � -

(
1− 1

n

)}
∧
(
u0 + (u− u0)

(
1− 1

n

))
. (2.2.17)

Then, from Itô’s formula, we have for n ∈ N
∗ and r � S,

E
[
�−4m+2

(
T (r) ∧ ζn, XT (r)∧ζn

)]
− �−4m+2(t, x)

= E

[∫ T (r)∧ζn

t

L�−4m+2(s,Xs) ds
]

= E

[∫ T (r)

t

1[t,ζn](s)L�−4m+2(s,Xs) ds
]

= E

[∫ r

0

1[t,ζn]

(
T (s)

)(
�2L�−4m+2

)
(T (s), XT (s)

)
ds

]
.

(2.2.18)

Noting that there exists a positive constant C
(2.8)
m , only depending on Λ, m

and T , such that: ∀ (s, y) ∈ D, s � t,
(
�2L�−4m+2

)
(s, y) � C(2.8)

m (u− t)-2�−4m+2(s, y), (2.2.19)

we have:

E
[
�−4m+2

(
T (r) ∧ ζn, XT (r)∧ζn

)]
� �−4m+2(t, x)

+ C(2.8)
m (u − t)-2

∫ r

0

E
[
�−4m+2

(
T (s) ∧ ζn, XT (s)∧ζn

)]
ds. (2.2.20)

Using Gronwall’s lemma and letting n→ +∞, we deduce that for r � S:

E
[
�−4m+2

(
T (r), XT (r)

)]
� �−4m+2(t, x) exp

(
C(2.8)
m (u− t)-2r

)
. (2.2.21)

Hence, from (2.2.16) and (2.2.21),

E

[(∫ ζ

t

|ḣr|2 dr
)m]

� (u− t)m−1|ν|2m

×
( c

1− e−cS
)2m

∫ S

0

e−(2cm−C(2.8)
m (u−t)�2)r �−4m+2(t, x) dr. (2.2.22)

Set:
C(2.9)
m = 2cm− C(2.8)

m (u− t)-2. (2.2.23)

Hence,

E

[(∫ ζ

t

|ḣr|2 dr
)m]

� (u− t)m−1|ν|2m

×
( c

1− e−cS
)2m 1− e−C

(2.9)
m S

C
(2.9)
m

�−4m+2(t, x). 
� (2.2.24)
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Notations. For every (t, x) ∈ D, we define nt,x0 as the smallest positive inte-
ger such that:

(t, x) ∈ Dnt,x
0

. (2.2.25)

Here is the main result of this subsection:

Theorem 2.1. Let w : D \ D → R be bounded and measurable and v be the
function given by:

∀ (t, x) ∈ D, v(t, x) = E
[
w
(
ζt,x, Xt,x

ζt,x

)]
. (2.2.26)

Then, for every (t, x) ∈ D, for every i ∈ {1, . . . , P}, the partial derivative
∂v/∂xi(t, x) exists and is given by:

∂v

∂xi
(t, x) = −E

[
w
(
ζt,x, Xζt,x

)

×
∫ ζt,x

t

〈
σ−1

(
r,Xt,x

r , Y t,x
r

)
∇xXt,x

r ḣir, dBr
〉]
, (2.2.27)

where, for every i ∈ {1, . . . , P}, hi is an R
P -valued bounded adapted process

satisfying:
{
s ∈ [t, T ] �→ his is absolutely continuous,

∃ η > 0 such that E
[(∫ T

t
|ḣis|2 ds

)(1+η)/2]
<∞,

(2.2.28)

and the boundary conditions:
{
∃n ∈ N

∗, n � nt,x0 , ∀ s � ζn, his = 0,

hit = ei.
(2.2.29)

Note from Proposition 2.4 that such a process does exist.

Proof. Fix (t, x) ∈ D and i ∈ {1, . . . , P}. As usual, we omit to specify the
dependence upon (t, x) of Xt,x, ζt,x, ζn,t,x and nt,x0 .

Let n � n0 be an arbitrarily fixed integer and let ε0 > 0 be a real such
that:

{t} ×BP (x, ε0) ⊂ D. (2.2.30)

Consider h satisfying (2.2.28) and (2.2.29) with respect to i and n.
We define for every ε ∈ R:

∀ t � s � T, Xε
s = Xt,x+εhs

s . (2.2.31)

Hence, thanks to the boundedness of h and to (2.0.8), we deduce that there
exists a constant C(2.10), such that:

∀ − ε0 � ε � ε0, E

[
sup
t�s�T

|Xε
s −Xs|2

]
� C(2.10)ε2. (2.2.32)
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Moreover, from Theorem 3.3.1 of Chapter III of Kunita [17], we know that,
for every ε ∈ R, Xε is a semimartingale given by:

dXε
s = σ

(
s,Xε

s , ϕ(s,Xε
s )
)

dBs + ε∇xXt,x+εhs
s ḣs ds

= σ
(
s,Xε

s , ϕ(s,Xε
s )
)(

dBs + εσ−1
(
s,Xε

s , ϕ(s,Xε
s )
)
∇xXt,x+εhs

s ḣs ds
)
.

(2.2.33)

Let us then define the following stopping times:





τε = inf{s � t, (s,Xε
s ) �∈ D},

-ε = inf{s � t, ε
∣∣∫ s
t

〈
σ−1

(
r,Xε

r , ϕ(r,Xε
r )
)
∇xXt,x+εhr

r ḣr, dBr
〉∣∣ � 1

}
,

σn,ε = ζn ∧ τε ∧ -ε.
(2.2.34)

Finally, we define the following process:

Bε
s = Bs + ε

∫ s

t

σ−1
(
r,Xε

r , ϕ(r,Xε
r )
)
∇xXt,x+εhr

r ḣr dr. (2.2.35)

and

Gεs = exp
(
−ε

∫ s

t

〈σ−1
(
r,Xε

r , ϕ(r,Xε
r )
)
∇xXt,x+εhr

r ḣr, dBr〉

− ε2

2

∫ s

t

|σ−1
(
r,Xε

r , ϕ(r,Xε
r )
)
∇xXt,x+εhr

r ḣr|2 dr
)
.

(2.2.36)

Fix −ε0 < ε < ε0.
Applying the Girsanov theorem, we deduce from (2.2.33) and from the

pathwise uniqueness of (2.0.2) that:

v(t, x + εei) = E
[
v
(
σn,ε, Xε

σn,ε

)
Gεσn,ε

]
. (2.2.37)

Hence,

v(t, x + εei) = E
[
v
(
ζn, Xε

ζn

)
Gεζn 1{ζn�τε} 1{�ε=T}

]

+ E
[
v
(
σn,ε, Xε

σn,ε)Gεσn,ε1({ζn�τε}∩{�ε=T})c

]
.

(2.2.38)

Since h(s) = 0 for s � ζn, note from (2.2.31) that, for every ε > 0, Xε
ζn = Xζn .

Therefore:

v(t, x + εei) = E
[
v
(
ζn, Xζn

)
Gεζn 1{ζn�τε} 1{�ε=T}

]

+ E
[
v
(
σn,ε, Xε

σn,ε

)
Gεσn,ε 1({ζn�τε}∩{�ε=T})c

]
.

(2.2.39)

Consider a regular function ψ : R → R, equal to the identity on {|x| � 1} and
to 0 outside {|x| � 2} and satisfying |ψ| � 1. Hence, setting:
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Gε,ψs = exp

(
−ψ

(
ε

∫ s

t

〈
σ−1

(
r,Xε

r , ϕ(r,Xε
r )
)
∇xXt,x+εhr

r ḣr, dBr
〉)

− ε2

2

∫ s

t

∣∣σ−1
(
r,Xε

r , ϕ(r,Xε
r )
)
∇xXt,x+εhr

r ḣr
∣∣2 dr

)
, (2.2.40)

we have:

v(t, x + εei)

= E
[
v
(
ζn, Xζn

)
Gε,ψζn 1{ζn�τε} 1{�ε=T}

]

+ E
[
v
(
σn,ε, Xε

σn,ε

)
Gεσn,ε1({ζn�τε}∩{�ε=T})c

]
.

= E
[
v
(
ζn, Xζn

)
Gε,ψζn

]
− E

[
v
(
ζn, Xζn

)
Gε,ψζn 1({ζn�τε}∩{�ε=T})c

]

+ E
[
v
(
σn,ε, Xε

σn,ε

)
Gεσn,ε1({ζn�τε}∩{�ε=T})c

]
.

(2.2.41)

Hence, putting:

Rε = −E
[
v
(
ζn, Xζn

)
Gε,ψζn 1({ζn�τε}∩{�ε=T})c

]

+ E
[
v
(
σn,ε, Xε

σn,ε

)
Gεσn,ε1({ζn�τε}∩{�ε=T})c

]
, (2.2.42)

we have:
∣∣Rε

∣∣ � 2 exp(1) ‖v‖∞
(
P{ζn > τε}+ P{-ε < T }

)

� 2 exp(1) ‖w‖∞
(

P

{
sup
t�s�T

∣∣Xε
s −Xs

∣∣ � -

n

}

+ P

{
ε sup
t�s�T

∣∣∣∣
∫ s

t

〈σ−1
r ∇xXt,x+εhr

r ḣr, dBr〉
∣∣∣∣ � 1

})
,

(2.2.43)

where we have noted σ−1
r instead of σ−1(r,Xε

r , ϕ(r,Xε
r )).

Thanks to (2.0.8) and to (2.2.32), we deduce that there exists a constant
C(2.11), not depending on ε, such that:

∣∣Rε
∣∣ � ‖w‖∞C(2.11)

(
n2ε2 + ε1+η/2

)
. (2.2.44)

Moreover, let us recall that:

v(t, x) = E
[
v
(
ζn, Xζn

)]
. (2.2.45)

Hence, we deduce that, for all ε ∈ ]−ε0, ε0[,

1
ε

(
v(t, x + εei)− v(t, x)

)
= E

[
v(ζn, Xζn)

(
Gε,ψζn − 1

ε

)]
+

1
ε
Rε. (2.2.46)

Letting ε→ 0, we deduce from (2.0.8) that:
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lim
ε→0

1
ε

(
v(t, x + εei)− v(t, x)

)

= −E

[
v(ζn, Xζn)

∫ ζn

t

〈
σ−1

(
r,Xr, ϕ(r,Xr)

)
∇xXrḣr, dBr

〉]
. (2.2.47)

Hence, for every 1 � i � P , ∂v/∂xi(t, x) exists and is given by:

∂v

∂xi
(t, x) = −E

[
v(ζn, Xζn)

∫ ζn

t

〈
σ−1

(
r,Xr, ϕ(r,Xr)

)
∇xXrḣr, dBr

〉]
. (2.2.48)

Hence, from the martingale property of
(
v(s,Xs)

)
t�s�ζ and the definition of

h, we deduce:

∂v

∂xi
(t, x) = −E

[
w(ζ,Xζ)

∫ ζ

t

〈σ−1
(
r,Xr, ϕ(r,Xr)

)
∇xXrḣr, dBr〉

]
, (2.2.49)

This completes the proof. 
�

Actually, the former scheme also permits to deduce estimates of the par-
tial derivatives (∂v/∂xi)1�i�P . Indeed, keeping the notations introduced in
(2.0.12) and (2.0.13), we state:

Theorem 2.2. Assume that the assumptions of Theorem 2.1 are in force.
Then, for all p � 2 and 0 < ε < 1, there exist two constants c

(2.4)
p,ε and Γ

(2.6)
p,ε ,

only depending on ε, k, L, λ, Λ, p, P , Q and T , such that for every R � c
(2.4)
p,ε ,

for every (t, x) ∈ D and for every i ∈ {1, . . . , P}:
∣∣∣∣
∂v

∂xi
(t, x)

∣∣∣∣ � Γ (2.6)
p,ε E

[
|w|p/(p−1)

(
ζ,Xζ

)](p−1)/p(u − t)−1/2

×
(
-2−2/p

(
-2 − |x− z|2

)−(2−2/p)

+ -2− 2
(1+ε)p + αP

2(P+1)
(
-2 − |x− z|2

)−(2− 2
(1+ε)p )

)
.

(2.2.50)

Proof. Fix (t, x) ∈ D and i ∈ {1, . . . , P}. Once again, we omit to specify the
dependence upon (t, x) of Xt,x, ∇xXt,x and ζt,x.

Let n � n0 and (c, S) ∈ (R∗+)2. Setting:

∀ (s, y) ∈ Dn, �n(s, y) =
(
-2
n − |y − z|2

)
(un − s), (2.2.51)

with un = u0 + (1− 1/n)(u− u0) and -n = (1 − 1/n)-,
we denote by h the process associated by Proposition 2.4 to the cylinder

Dn, the function �n, the vector ei and the reals c and S.
It is readily seen that ei − h sastifies (2.2.28) and (2.2.29) with respect

to n.
Hence, from Theorem 2.1, we have to estimate the quantity:
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E

[
w(ζ,Xζ)

∫ ζ

t

〈σ−1(r,Xr, Yr)∇xXrḣr, dBr〉
]
. (2.2.52)

Let p � 2 and q ∈ [1, 2] such that 1/p + 1/q = 1. We have:

∣∣∣∣E
[
w(ζ,Xζ)

∫ ζ

t

〈σ−1(r,Xr, Yr)∇xXrḣr, dBr〉
]∣∣∣∣

� E
[
|w|q

(
ζ,Xζ

)]1/q
E

[∣∣∣∣
∫ ζ

t

〈σ−1(r,Xr, Yr)∇xXrḣr, dBr〉
∣∣∣∣
p]1/p

. (2.2.53)

Let us deal with the term E[|
∫ ζ
t 〈σ−1(r,Xr, Yr)∇xXrḣr, dBr〉|p] in (2.2.53).

There exists a constant C
(2.12)
p , only depending on λ and p, such that:

E

[∣∣∣∣
∫ ζ

t

〈σ−1(r,Xr, Yr)∇xXrḣr, dBr〉
∣∣∣∣
p]

� C(2.12)
p E

[(∫ ζ

t

|σ−1(r,Xr, Yr)|2 |∇xXr|2|ḣr|2 dr
)p/2]

� C(2.12)
p E

[
sup
t�r�ζ

|∇xXr|p
(∫ ζ

t

|ḣr|2 dr
)p/2]

.

(2.2.54)

Hence, there exists a constant C
(2.13)
p , only depending on λ, P and p, such

that:

E

[∣∣∣∣
∫ ζ

t

〈σ−1(r,Xr, Yr)∇xXrḣr, dBr〉
∣∣∣∣
p]

� C(2.13)
p

(
E

[(∫ ζ

t

|ḣr|2 dr
)p/2]

+ E

[
sup
t�r�ζ

|∇xXr − I|p
(∫ ζ

t

|ḣr|2 dr
)p/2])

� C(2.13)
p

(
E

[(∫ ζ

t

|ḣr|2 dr
)p/2]

+ E

[
sup
t�r�ζ

|∇xXr − I|p(1+ε)/ε
]ε/(1+ε)

× E

[(∫ ζ

t

|ḣr|2 dr
)p(1+ε)/2]1/(1+ε)

)
,

(2.2.55)

where 0 < ε < 1.
Therefore, applying Lemma 2.2 and Proposition 2.4 to the cylinder Dn,

we have for R � c
(2.3)
p(1+ε)/ε,
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E

[(∫ ζ

t

〈σ−1(r,Xr, Yr)∇xXrḣr, dBr〉
)p]1/p

�
(
C(2.13)
p

) 1
p

(
(un − t)

1
2−

1
p

c

1− e−cS

×
(

1− e−C
(2.14)S

C(2.14)

) 1
p

�
−(2− 2

p )
n (t, x)

+
(
Γ

(2.4)
p(1+ε)

ε

) ε
p(1+ε)

(un − t)
1
2−

1
p(1+ε)+

α
2(P +1) -

αP
2(P+1)
n

× c

1− e−cS

(
1− e−C

(2.15)S

C(2.15)

) 1
p(1+ε)

�
−(2− 2

p(1+ε) )
n (t, x)

]
,

(2.2.56)

where: 



C(2.14) = cp− C

(2.8)
p/2 (un − t)-2

n,

C(2.15) = cp(1 + ε)− C
(2.8)
p(1+ε)/2(un − t)-2

n.
(2.2.57)

Choose c = 1/p× (1 + C
(2.8)
p/2 + C

(2.8)
p(1+ε)/2)(un − t)-2

n.
Note that such a choice implies C(2.14) > 0 and C(2.15) > 0.
Hence, letting S → +∞, there exists a constant Γ (2.6)

p,ε , only depending on
ε, k, L, λ, Λ, p, P , Q and T , such that:

∣∣∣∣
∂v

∂xi
(t, x)

∣∣∣∣ � Γ (2.6)
p,ε E

[
|w|q

(
ζ,Xζ

)]1/q

×
(

(un − t)−1/2-2−2/p
n

(
-2
n − |x− z|2

)−(2−2/p)

+ (un − t)−1/2-
2− 2

(1+ε)p + αP
2(P +1)

n

(
-2
n − |x− z|2

)−(2− 2
(1+ε)p )

)
.

(2.2.58)

Letting n→ +∞, we complete the proof. 
�
The latter result can be slightly simplified:

Theorem 2.3. Under the assumptions of Theorem 2.1, there exist for every
p � 2 two constants c

(2.5)
p and Γ

(2.7)
p , only depending on k, L, λ, Λ, p, P ,

Q and T , such that for every R � c
(2.5)
p , for every (t, x) ∈ D and for every

i ∈ {1, . . . , P}:
∣∣∣∣
∂v

∂xi
(t, x)

∣∣∣∣ � Γ (2.7)
p E

[
|w|p/(p−1)

(
ζt,x, Xt,x

ζt,x

)](p−1)/p

× (u − t)−1/2(-− |x− z|)−(2−2/p). (2.2.59)

Proof. Consider (t, x) ∈ D. Let:





r = -− |x− z|,
D′ = [t, u[×B(x, r),
ζ′ = inf{s � t, (s,Xs) �∈ D′}.

(2.2.60)
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From Theorem 2.2 applied to the cylinder D′ ⊂ D, we know that that for all
p � 2 and 0 < ε < 1, the following holds as soon as R � c

(2.4)
p,ε :

|∇xv(t, x)| � Γ (2.6)
p,ε E

[
|v|q(ζ′, Xζ′)

]1/q(u− t)−1/2

×
(
r−2+2/p + r−2+2/(p(1+ε))+αP/(2(P+1))

)
. (2.2.61)

Noting that:

E
[
|v|q(ζ′, Xζ′)

]
= E

[∣∣E
[
w(ζ,Xζ )

∣∣ Fζ′
]∣∣q

]
� E

[
|w|q(ζ,Xζ)

]
, (2.2.62)

and choosing ε > 0 satisfying:

2
(1 + ε)p

+
αP

2(P + 1)
� 2

p
, (2.2.63)

we complete the proof. 
�

2.3 Estimate of ∇xθ

Here is the final part of our scheme: from Subsections 2.1 and 2.2, we give a
global bound of the gradient of the function θ.

Notations. Keep the notations given in (2.0.12) and (2.0.13), and in addition
consider a smooth function g : D → R such that:






∀ (t, x) ∈ D, g(t, x) � 0,
∀ (t, x) ∈ D \ D, g(t, x) = 0,
∀ (t, x) ∈ [u0, u]× ∂B(z, -), g′t(t, x) = g′x(t, x) = g′′x(t, x) = 0.

(2.3.1)

Then, from Itô’s formula, we have for every j ∈ {1, . . . , Q} and for every
(t, x) ∈ D:

(θjg)(t, x) = (ϕjg)(t, x) = E

[∫ ζt,x

t

(ējg)
(
s,Xt,x

s

)
ds

]

− E

[∫ ζt,x

t

(ϕjLg)
(
s,Xt,x

s

)
ds

]
− E

[∫ ζt,x

t

〈∇xϕj , ā∇xg〉
(
s,Xt,x

s

)
ds

]
. (2.3.2)

where:

∀ (s, y) ∈ D,

{
ē(s, y) = e

(
s, y, ϕ(s, y),∇xϕ(s, y)σ

(
s, y, ϕ(s, y)

))
,

ā(s, y) = a
(
s, y, ϕ(s, y)

)
.

(2.3.3)
Hence, setting for all (t, x) ∈ D, and all r ∈ [t, u]:

vr,j(t, x) = E
[(
ējg − ϕjLg − 〈∇xϕj , ā∇xg〉

)(
r ∧ ζt,x, Xr∧ζt,x

)]

= E
[
1[t,ζt,x](r)

(
ējg − ϕjLg − 〈∇xϕj , ā∇xg〉

)(
r ∧ ζt,x, Xr∧ζt,x

)]
, (2.3.4)
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we have:
∀ (t, x) ∈ D, (θjg)(t, x) =

∫ u

t

vr,j(t, x) dr. (2.3.5)

Hence, noting that r ∧ ζt,x is the first exit time of Xt,x from the cylinder
[u0, r] × B(z, -), we deduce from Theorems 2.1 and 2.3 that for every i ∈
{1, . . . , P}:

∀ (t, x) ∈ D,
∂(θjg)
∂xi

(t, x) =
∫ u

t

∂vr,j

∂xi
(t, x) dr. (2.3.6)

Additional notations. For every n ∈ N
∗, we denote by pn the solution in

]2,+∞[ of the equation:

p = 2 +
4
n
− 4

pn
. (2.3.7)

Actually, pn is given by:

pn = 1 +
2
n

+

√
1 +

4
n2

, (2.3.8)

which tends to 2 as n→ +∞.

We firstly prove the following local bound of ∇xθ:

Theorem 2.4. Let n > 2 be such that the following inequality holds:

pn
2
− β(pn − 1) < 1, (2.3.9)

where β is given by Proposition 2.1.
Then, there exists a constant Γ (2.8), only depending on k, L, λ, Λ, n, P ,

Q and T , such that for every R � (c(2.5)pn ∧ c(2.1)):

sup
(t,x)∈D

(
|∇xθ(t, x)| (u − t)

(
-2 − |x− z|2

)npn/2
)

� Γ (2.8)(u− u0)1/2
(
-(2pn−2)/(pn−2) + -2n−2/pn

)
. (2.3.10)

Proof. Let n satisfy the assumptions of the statement. Put:

p = pn and q =
p

p− 1
< 2, (2.3.11)

and consider R � (c(2.5)p ∧ c(2.1)).
Moreover, let:

∀ (t, x) ∈ D, g(t, x) =
(
-2 − |x− z|2

)n(u− t). (2.3.12)

Hence, there exists a constant C(2.16), only depending on k, L, λ, Λ, n, P , Q
and T , such that:
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∀ (t, x) ∈ D,

{
|∇xg(t, x)| � C(2.16)(u− t)-2n−1,

|Lg(t, x)| � C(2.16)-2n−2.
(2.3.13)

Fix now (t, x) ∈ D and i ∈ {1, . . . , P}. Once again, we omit to specify the
dependence upon (t, x) of Xt,x and ζt,x.

From Theorem 2.3, we know that for every j ∈ {1, . . . , Q},
∣∣∣∣
∫ u

t

∂vr,j

∂xi
(t, x) dr

∣∣∣∣ � Γ (2.7)
p (-− |x− z|)−(2−2/p)

×
∫ u

t

(
E
[
|ējg|q(r ∧ ζ,Xr∧ζ)

]1/q + E
[
|ϕjLg|q(r ∧ ζ,Xr∧ζ)

]1/q

+ E
[
|〈∇xϕj , ā∇xg〉|q(r ∧ ζ,Xr∧ζ)

]1/q)(r − t)−1/2 dr.

(2.3.14)

Hence, from (2.3.13), there exists a constant C(2.17), only depending on k, L,
λ, Λ, n, P , Q and T , such that for every j ∈ {1, . . . , Q},

∣∣∣∣
∂(θjg)
∂xi

(t, x)
∣∣∣∣ � C(2.17)(-− |x− z|)−(2−2/p)

×
∫ u

t

(
E
[
|ējg|q(r ∧ ζ,Xr∧ζ)

]1/q + -2n−2

+ (u− t)-2n−1
E
[
|Zr|q 1{r�ζ}

]1/q)(r − t)−1/2 dr.

(2.3.15)

Therefore, modifying C(2.17) if necessary, we deduce that for every j ∈
{1, . . . , Q},
∣∣∣∣
(∂θj
∂xi

g
)

(t, x)
∣∣∣∣
(
-− |x− z|

)2−2/p

� C(2.17)

(
(u − t)1/2-2n−2 +

∫ u

t

(
E
[
|ējg|q(r ∧ ζ,Xr∧ζ)

]1/q

+ (u− t)-2n−1
E
[
|Zr|q 1{r�ζ}

]1/q)(r − t)−1/2 dr
)
.

(2.3.16)

Hence, multiplying (2.3.16) by (-+ |x− z|)2−2/p, we deduce that there exists
a constant C(2.18) (whose value may change from inequality to another), only
depending on k, L, λ, Λ, n, P , Q and T , such that for every j ∈ {1, . . . , Q},

∣∣∇xθj(t, x)
∣∣ (-2 − |x− z|2

)n+2−2/p(u − t) � C(2.18)-2−2/p

×
(

(u− t)1/2-2n−2 +
∫ u

t

(
E
[
|Zr∧ζ |2qgq(r ∧ ζ,Xr∧ζ)

]1/q

+ (u− t)-2n−1
E
[
|Zr|q 1{r�ζ}

]1/q)(r − t)−1/2 dr
)
.

(2.3.17)

Note that, for all t � r � u,
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E
[
|Zr∧ζ|2qgq(r ∧ ζ,Xr∧ζ)

]
= E

[
|Zr∧ζ |2 1{r�ζ}

×
(
|Zr∧ζ|

(
-2 − |Xr∧ζ − z|2

) np
2 (u− r ∧ ζ)

) 2
p−1

(u− r ∧ ζ)
p−2
p−1

]
.

(2.3.18)

Set:

M = sup
(s,y)∈D

(
|∇xθ(s, y)|

(
-2 − |y − z|2

)np/2(u− s)
)

= sup
(s,y)∈D

(
|∇xθ(s, y)|

(
-2 − |y − z|2

)np/2(u− s)
)

= sup
(s,y)∈D

(
|∇xϕ(s, y)|

(
-2 − |y − z|2

)np/2(u− s)
)
.

(2.3.19)

From (2.3.17) and (2.3.18) and from the choice of p, we deduce that:

∣∣∇xθ(t, x)
∣∣ (-2 − |x− z|2

)np/2(u− t)

� C(2.18)-2−2/p

(
(u− t)1/2-2n−2

+ M
2/p

(u− t)(p−2)/p

∫ u

t

E
[
|Zr|2 1{r�ζ}

]1/q(r − t)−1/2 dr

+ (u− t)-2n−1

∫ u

t

E
[
|Zr|q 1{r�ζ}

]1/q(r − t)−1/2 dr
)
.

(2.3.20)

Moreover, from Young’s inequality:
∫ u

t

E
[
|Zr|2 1{r�ζ}

]1/q(r − t)−1/2 dr

+
∫ u

t

E
[
|Zr|q 1{r�ζ}

]1/q(r − t)−1/2 dr

�
∫ u

t

E

[
|Zr|2

(r − t)β
1{r�ζ}

]1/q

(r − t)−1/2+β/q dr

+
∫ u

t

E

[
|Zr|2

(r − t)β
1{r�ζ}

]1/2

(r − t)−(1−β)/2 dr

�
∫ u

t

(
E

[
|Zr|2

(r − t)β
1{r�ζ}

]
+ (r − t)−p/2+β(p−1) + (r − t)−1+β

)
dr.

(2.3.21)

Hence, from the inequalities (2.3.20) and (2.3.21), and thanks to Proposition
2.1 and to the choice of n, there exists a constant Γ (2.8), only depending on
k, L, λ, Λ, n, P , Q and T , such that:

∣∣∇xθ(t, x)
∣∣ (-2 − |x− z|2

)pn/2(u− t)

� Γ (2.8)-2−2/p
(

(u − t)1/2-2n−2 + M
2/p

(u− t)(p−2)/p
)
. (2.3.22)



Estimates of the Solutions of a System of Quasi-linear PDEs 327

Finally, taking the supremum over D, we deduce:

M � Γ (2.8)-2−2/p
(

(u − u0)1/2-2n−2 + M
2/p

(u− u0)(p−2)/p
)
. (2.3.24)

Hence, modifying if necessary Γ (2.8), we deduce:

M � Γ (2.8)(u − u0)1/2
(
-(2p−2)/(p−2) + -2n−2/p

)
. (2.3.25)

This completes the proof. 
�

Following the proof of Theorem 2.3, we deduce:

Theorem 2.5. Under the assumptions of Theorem 2.4, there exists a constant
Γ (2.9), only depending on k, L, λ, Λ, n, P , Q and T , such that for every
R � (c(2.5)pn ∧ c(2.1)):

∀ (t, x) ∈ D, |∇xθ(t, x)| � Γ (2.9)(-− |x− z|)−(n+1+εn)(u − t)−1/2. (2.3.26)

where εn → 0 as n→ +∞.

Keeping the notations introduced in (2.0.12) and (2.0.13), we establish the
following estimate which holds as soon as t is closed enough from T :

Theorem 2.6. Assume that u = t0 + R2 = T , and that n satisfies the as-
sumptions of Theorem 2.4.

Then, there exists a constant Γ (2.10), only depending on k, L, λ, Λ, n, P ,
Q and T , such that for every R � (c(2.5)pn ∧ c(2.1)):

sup
(t,x)∈D

(
|∇xθ(t, x)|

(
-2 − |x− z|2

)npn/2
)

� Γ (2.10)
(
-(2pn−2)/(pn−2) + -2n−2/pn

)
. (2.3.27)

Proof. Consider a smooth function g : D → R such that:





∀ (t, x) ∈ D, g(t, x) � 0,

∀ (t, x) ∈ [u0, T ]× ∂B(z, -),
g(t, x) = g′t(t, x) = g′x(t, x) = g′′x(t, x) = 0.

(2.3.28)

Then, from Itô’s formula, we have for every j ∈ {1, . . . , Q} and for every
(t, x) ∈ D:

(θjg)(t, x) = (ϕjg)(t, x)

= E
[(
ϕjg

)(
ζt,x, Xt,x

ζt,x

)]
+ E

[∫ ζt,x

t

(ējg)
(
s,Xt,x

s

)
ds

]

− E

[∫ ζt,x

t

(ϕjLg)
(
s,Xt,x

s

)
ds

]
− E

[∫ ζt,x

t

〈∇xϕj , ā∇xg〉
(
s,Xt,x

s

)
ds

]
.

(2.3.29)
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Hence, letting for every j ∈ {1, . . . , Q} and for every (t, x) ∈ D:

vj(t, x) = E
[
(ϕjg)

(
ζt,x, Xt,x

ζt,x

)]
, (2.3.30)

and for every t � r � T ,

vr,j(t, x) = E

[(
ējg − ϕjLg − 〈∇xϕj , ā∇xg〉

)(
r ∧ ζt,x, Xt,x

r∧ζt,x

)]
,

= E

[
1[t,ζt,x](r)

(
ējg − ϕjLg − 〈∇xϕj , ā∇xg〉

)(
r ∧ ζt,x, Xt,x

r∧ζt,x

)]
,

(2.3.31)

we have for every i ∈ {1, . . . , P} and for every (t, x) ∈ D:

(θjg)(t, x) = vj(t, x) +
∫ T

t

vr,j(t, x) dr,

∂(θjg)
∂xi

(t, x) =
∂vj

∂xi
(t, x) +

∫ T

t

∂vr,j

∂xi
(t, x) dr.

(2.3.32)

Let R � (c(2.5)pn ∧ c(2.1)) and let g be given by:

∀ (t, x) ∈ D, g(t, x) =
(
-2 − |x− z|2

)n
. (2.3.33)

Hence, there exists a constant C(2.19), only depending on k, L, λ, Λ, n, P , Q
and T , such that:

∀ (t, x) ∈ D,

{
|∇xg(t, x)| � C(2.19)-2n−1,

|Lg(t, x)| � C(2.19)-2n−2.
(2.3.34)

Fix now (t, x) ∈ D and i ∈ {1, . . . , P}. As usual, we omit to specify the
dependence upon (t, x) of Xt,x and ζt,x.

Let us firstly estimate the quantities (∂vj/∂xi(t, x))1�j�Q.
Applying Theorem 2.3 to the function (s, y) ∈ D �→ vj(s, y) − (Hjg)(x),

we deduce that for every j ∈ {1, . . . , Q}:
∣∣∣∣
∂vj

∂xi
(t, x)

∣∣∣∣ � Γ (2.7)
p E

[∣∣(Hjg)(Xζ)− (Hjg)(x)
∣∣q
]1/q

× (T − t)−1/2(-− |x− z|)−(2−2/p). (2.3.35)

Hence, from Assumption (A’), there exists a constant C(2.20), only depending
on k, L, λ, Λ, n, P , Q and T , such that for every j ∈ {1, . . . , Q}:

∣∣∣∣
∂vj

∂xi
(t, x)

∣∣∣∣ � C(2.20)-2n−1
E
[
|Xζ − x|q

]1/q

× (T − t)−1/2(-− |x− z|)−(2−2/p). (2.3.36)

Hence, modifying C(2.20) if necessary, we have:
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∣∣∣∣
∂vj

∂xi
(t, x)

∣∣∣∣ � C(2.20)-2n−1(-− |x− z|)−(2−2/p). (2.3.37)

Hence, following the proof of Theorem 2.4, we deduce from (2.3.15) and
(2.3.32) that there exists a constant C(2.21), only depending on k, L, λ, Λ, n,
P , Q and T , such that for every j ∈ {1, . . . , Q}:

|∇xθj(t, x)| g(t, x) (- − |x− z|)2−2/p

� C(2.21)

(
-2n−1 +

∫ T

t

(
-2n−2 + E

[
|ējg|q

(
r ∧ ζ,Xr∧ζ

)]1/q

+ -2n−1
E
[(
|Zr|1{r�ζ}

)q]1/q)(r − t)−1/2 dr
)
.

(2.3.38)

Hence, multiplying by (- + |x− z|)2−2/p, we deduce that there exists C(2.22),
only depending on k, L, λ, Λ, n, P , Q and T , such that for every j ∈
{1, . . . , Q}:

|∇xθj(t, x)|
(
-2 − |x− z|2

)n+2−2/p

� C(2.22)-2−2/p

(
-2n−2 +

∫ T

t

(
E
[
|Zr|2qgq

(
r ∧ ζ,Xr∧ζ

)]1/q

+ -2n−1
E
[(
|Zr|1{r�ζ}

)q]1/q)(r − t)−1/2 dr
)
.

(2.3.39)

Note once again that for every r ∈ [t, T ]:

E
[
|Zr|2qgq

(
r ∧ ζ,Xr∧ζ

)]

= E

[
|Zr|2 1{r�ζ}

(
|Zr| gp/2

(
r ∧ ζ,Xr∧ζ

))2/(p−1)
]
. (2.3.40)

Let:
M ′ = sup

(s,y)∈D

(
|∇xθ(s, y)| gp/2(s, y)

)
. (2.3.41)

Hence, modifying C(2.22) if necessary, we deduce from the choice of p that:

|∇xθ(t, x)|
(
g(t, x)

)p/2 � C(2.22)-2−2/p

×
(
-2n−2 +

(
M ′

)2/p
∫ T

t

E
[
|Zr|2 1{r�ζ}

]1/q(r − t)−1/2 dr

+ -2n−1

∫ T

t

E
[
|Zr|q 1{r�ζ}

]1/q(r − t)−1/2 dr
)
.

(2.3.42)

Moreover, from (2.3.21):
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∫ T

t

E
[
|Zr|2 1{r�ζ}

]1/q
(r − t)−1/2 dr

+
∫ T

t

E
[
|Zr|q 1{r�ζ}

]1/q(r − t)−1/2 dr

�
∫ T

t

(
E

[
|Zr|2

(r − t)β
1{r�ζ}

]
+ (r − t)−p/2+β(p−1) + (r − t)−1+β

)
dr.

(2.3.43)

Hence, from the inequalities (2.3.42) and (2.3.43) and Proposition 2.1, there
exists a constant C(2.23), only depending on k, L, λ, Λ, n, P , Q and T , such
that, for all (t, x) ∈ D,

|∇xθ(t, x)|
(
g(t, x)

)p/2 � C(2.23)-2−2/p
(
-2n−2 +

(
M ′

)2/p
)
. (2.3.44)

Finally, taking the supremum over D:

M ′ � C(2.23)
(
-(2p−2)/(p−2) + -2n−2/p

)
. (2.3.45)

This completes the proof. 
�

We deduce:

Theorem 2.7. Under the assumptions and the notations of Theorem 2.6,
there exists a constant Γ (2.11), only depending on k, L, λ, Λ, n, P , Q and T ,
such that for every R � (c(2.5)pn ∧ c(2.1)):

∀ (t, x) ∈ D, |∇xθ(t, x)| � Γ (2.11)(-− |x− z|)−(n+1+εn). (2.3.46)

Remark 2.2. From Theorem 1.2 (local Hölder estimate of θ), we can give the
following version of Theorem 2.5:

Theorem 2.8. Assume that n satisfies the assumptions of Theorem 2.4.
Then, for every 0 < δ < T , there exist two constants c

(2.6)
δ,n and Γ

(2.12)
δ,n , only

depending on δ, k, λ, Λ, n, P , Q and T , such that for all (t0, x0) ∈ [0, T [×R
P

and R > 0, satisfying R � c
(2.6)
δ,n and t0 + R2 � T − δ, we have:

∀ (t, x) ∈ D, |∇xθ(t, x)| � Γ
(2.12)
δ,n (u− t)−1/2(-− |x− z|)−(n+1+εn), (2.3.47)

where εn is given by Theorem 2.5.

Finally, from Theorems 2.4 and 2.6, we deduce the following global esti-
mate of the gradient of θ:

Theorem 2.9. Under Assumption (A’), there exists a constant Γ (2.13), only
depending on k, L, λ, Λ, P , Q and T , such that:

∀ (t, x) ∈ [0, T ]× R
P , |∇xθ(t, x)| � Γ (2.13). (2.3.48)
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