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Summary. We use a matrix central-limit theorem which makes the Gaussian Uni-
tary Ensemble appear as a limit of the Laguerre Unitary Ensemble together with
an observation due to Johansson in order to derive new representations for the
eigenvalues of GUE. For instance, it is possible to recover the celebrated equality
in distribution between the maximal eigenvalue of GUE and a last-passage time in
some directed Brownian percolation. Similar identities for the other eigenvalues of
GUE also appear.

1 Introduction

The most famous ensembles of Hermitian random matrices are undoubtedly
the Gaussian Unitary Ensemble (GUE) and the Laguerre Unitary Ensemble
(LUE). Let (X ;)1<i<j<n (respectively (X ;)1<i<n) be complex (respectively
real) standard independent Gaussian variables (E(X; ;) = 0, E(|X; ;|*) = 1)
and let X;; = X,,; for i > j. The GUE(N) is defined to be the random
matrix X = (X, ;)1<ij<n. It induces the following probability measure on
the space Hy of N x N Hermitian matrices:

Py (dH) = Z3 exp(—% Tr(H2)) dH (1)

where dH is Lebesgue measure on H . In the same way, if M > N and AN-M
is a N x M matrix whose entries are complex standard independent Gaussian
variables, then LUE(N, M) is defined to be the random N x N matrix YV:M =

ANM(AN.MY* where x stands for the conjugate of the transposed matrix.
Alternatively, LUE(N, M) corresponds to the following measure on Hy:

Py y(dH) = Zyhy (det H)M N exp(— Tr H) 1550 dH. (2)

A central-limit theorem which already appeared in the Introduction of [7]
asserts that GUE(N) is the limit in distribution of LUE(N, M) as M — oo
in the following asymptotic regime:
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For connections with this result, see Theorem 2.5 of [2] and a note in Section
5 of [9]. We also state a process-level version of the previous convergence when
the Gaussian entries of the matrices are replaced by Brownian motions. The
convergence takes place for the trajectories of the eigenvalues.

Next, we make use of this matrix central-limit theorem together with an
observation due to Johansson [5] and an invariance principle for a last-passsage
time due to Glynn and Whitt [3] in order to recover the following celebrated
equality in distribution between the maximal eigenvalue AY_ of GUE(N) and

some functional of standard N-dimensional Brownian motion (B;)1<i<n as

(3)

M ®  sup S (Bilt) - Bi(tinh)). (4)

O=to<-<tn=1%5—,
The right-hand side of (4) can be thought of as a last-passage time in an ori-
ented Brownian percolation. Its discrete analogue for an oriented percolation
on the sites of N2 is the object of Johansson’s remark. The identity (4) first
appeared in [1] and [4]. Very recently, O’Connell and Yor shed a remarkable
light on this result in [10]. Their work involves a representation similar to (4)
for all the eigenvalues of GUE(NN). We notice here that analogous formulae
can be written for all the eigenvalues of LUE(N, M). On the one hand, seeing
the particular expression of these formulae, a central-limit theorem can be
established for them and the limit variable (2 is identified in terms of Brow-
nian functionals. On the other hand, the previous formulae for eigenvalues of
LUE(N, M) converge, in the limit given by (3), to the representation found
in [10] for GUE(N) in terms of some path-transformation I" of Brownian mo-
tion. It is not immediately obvious to us that functionals I" and {2 coincide.
In particular, is this identity true pathwise or only in distribution?

The matrix central-limit theorem is presented in Section 2 and its proof
is postponed to the last section. In section 3, we described the consequences
to eigenvalues representations and the connection with the O’Connell-Yor
approach.

2 The central-limit theorem

Here is the basic form of the matrix-central limit theorem:

Theorem 1. Let YN'M and XN be taken respectively from LUE(N, M) and
GUE(N). Then
YNM _MIdy  a XN

v M M—o0

(5)
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We turn to the process version of the previous result. Let ANM = (4; ;) be
a N x M matrix whose entries are independent standard complex Brownian
motions. The Laguerre process is defined to be YN:M = ANM(ANMyx ¢
is built in exactly the same way as LUE(N, M) but with Brownian motions
instead of Gaussian variables. Similarly, we can define the Hermitian Brownian
motion XV as the process extension of GUE(NV).

Theorem 2. If YN'M s the Laguerre process and (X (t))i>o is Hermitian
Brownian motion, then:

(YNvM(t) —MtIdN> a
vM >0

in the sense of weak convergence in C(Ry, Hn).

(XY(1) 5 (6)

As announced, the proofs of the previous theorems are postponed up to
section (4). Theorem 1 is an easy consequence of the usual multi-dimensionnal
central-limit theorem. For Theorem 2, our central-limit convergence is shown
to follow from a law of large numbers at the level of quadratic variations.

Let us mention the straightforward consequence of Theorems 1 and 2 on
the convergence of eigenvalues. If H € Hy, let us denote by Iy (H) < --- <
In(H) its (real) eigenvalues and I(H) = (I1(H),...,In(H)). Using the min-
max formulas, it is not difficult to see that each [; is 1-Lipschitz for the
Euclidean norm on Hy. Thus, [ is continuous on Hy. Therefore, if we set
uNM = (Y NMY and AN = [(X)

’uN,JVI M 4
(7) —— (A )icien - (7)
1IN

v M M—o0

With the obvious notations, the process version also takes place:

((w\/)ﬁ_m)]) T (W )cian),e ®

Analogous results hold in the real case of GOE and LOE and they can be
proved with the same arguments. To our knowledge, the process version had
not been considered in the existing literature.

3 Consequences on representations for eigenvalues

3.1 The largest eigenvalue

Let us first indicate how to recover from (7) the identity
. N
)\N = sup Z(.Bz (tz) — .Bz (ti—1)> (9)

max
O=to<--<tn=1 i=1
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where AN = Al is the maximal eigenvalue of GUE(N) and (B;, 1 <i < N)
is a standard N-dimensional Brownian motion. If (w;;, (i,5) € (N\ {0})?)
are i.i.d. exponential variables with parameter one, define

H(M,N) = max{z wij; m e PM, N)} (10)

(i.j)em
where P(M, N) is the set of all paths 7 taking only unit steps in the north-
east direction in the rectangle {1,..., M} x {1,...,N}. In [5], it is noticed
that

H(M,N) < iyl (1)
where pM.N = ,u%’M is the largest eigenvalue of LUE(N, M). Now an invari-

ance principle due to Glynn and Whitt in [3] shows that

N

H(Ma N) - M d
su Bi(ti) — Bi(ti—1)). 12
N Oztogugwg (t) - Bilti).  (12)

On the other hand, by (7)
Piae =M a4 x
VT Moo max

Comparing (11), (12) and (13), we get (9) for free.
In the next section, we will give proofs of more general statements than (11)
and (12).

(13)

3.2 The other eigenvalues

In fact, Johansson’s observation involves all the eigenvalues of LUE(N, M)
and not only the largest one. Although it does not appear exactly like that
in [5], it takes the following form. First, we need to extend definition (10) as
follows: for each k, 1 < k < N, set

Hy(M,N) = max{z

Tseoymy € P(M,N), 71, ..., 7 all disjoint}. (14)

G,j)EmU-Umy, 7

Then, the link, analogous to (11), with the eigenvalues of LUE(N, M) is ex-
pressed by

d N,M N,M N,M
Hy(M,N) = pn™ + "+ o+ iy (15)
In fact, the previous equality in distribution is also valid for the vector

(Hp(M,N))i1<k<n and the corresponding sums of eigenvalues, which gives
a representation for all the eigenvalues of LUE(N, M).
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Proof of (15). The arguments and notations are taken from Section 2.1 in
[5]. Denote by Mpsn the set of M x N matrices A = (a;;) with non-
negative integer entries and by Mj, y the subset of A € My n such that
Y(A) =>"a;j = s. Let us recall that the Robinson-Schensted-Knuth (RSK)
correspondence is a one-to-one mapping from M3, y to the set of pairs (P, Q)
of semi-standard Young tableaux of the same shape A which is a partition of s,
where P has elements in {1,..., N} and @ has elements in {1,..., M }. Since
M > N and since the numbers are strictly increasing down the columns of P,
the number of rows of A is at most N. We will denote by RSK(A) the pair
of Young tableaux associated to a matrix A by the RSK correspondence and
by A(RSK(A)) their common shape. The crucial fact about this correspon-
dence is the combinatorial property that, if A = A(RSK(A)), then for all &,
1<k<N,

A Ag o A zmax{z

Qi it
(i,§)€m1U--- Uy “1

Ty s € P(M,N), 71, ... m all disjoint}. (16)

Now consider a random M x N matrix X whose entries (z;;) are i.i.d. geo-
metric variables with parameter q. Then for any \° partition of an integer s,
we have

POARSK(N) = A} =3

M,N>

A(RSK(A))=A0 P{X = A}

But for A € M§, y, P{X = A} = (1 — ¢)""V¢® is independent of A, which
implies
P{INRSK(X) =A%)} = (1 — ¢)MNg= A L(\°, M, N)
where L(A°, M, N) = 8{A € M n, ARSK(A4)) = A°}. Since the RSK map-
ping is one-to-one
LA, M,N) =Y (A, M)Y(\°,N)

where Y (\?, K) is just the number of semi-standard Young tableaux of shape

A% with elements in {1,..., K}. This cardinal is well-known in combinatorics
and finally
0 -1 0 _ 102 (h{ + M — N)!
L) —eihy [ 8 -atyt [ AN
1i<j<N 1IN é

where cyny = HogigN—lj! (M — N +j)! and hY = \? + N — i such that
hy > hg > -+ > hy > 0. With the same correspondence as before between h
and A\, we can write

P{h(RSK(X)) = h°}

_ C*l (1 B q)]\/[N (hO _ hO
= CuN NN -D2 i i
1<i<j<N 1<iKN

hY + M — N)!
)2H%

= patvg (h°).
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Now set ¢ = 1 — L~! and use the notation X instead of X to recall the
dependence of the distribution on L. An easy asymptotic expansion shows that

LNP(M N ([ Lz])
MN H —Cl?z H iUM Ne e " = pLuev,m)(T)

N d*
L—oo 44
1§z<]§N 1<i<N

where pr,ug(n,ar) is the joint density of the ordered eigenvalues of LUE(N, M).
This can be used to prove that

—h(RSK(XL)) —— (e e ). (17)

On the other hand, if 2, is a geometric variable with parameter 1 — L~!, then
x5, /L converges in ditribution, when L — oo, to an exponential variable of
parameter one. Therefore, using the link between h and A together with (16),
we have

1 k
z(Zhi(RSK(XL))) —= (He(M,N)), -

1<kgN Lo

Comparing with (17), we get the result. O

Now, let us try to adapt what we previously did with H (M, N) and p.N

to the new quantities Hy (M, N). First, we would like to have an analogue of
the Glynn—Whitt invariance principle (12). To avoid cumbersome notations,
let us first look at the case k = 2, N = 3. In this case, the geometry involved in
the Hy(M, 3) is simple: we are trying to pick up the largest possible weight by
using two north-east disjoint paths in the rectangle {1,..., M} x {1,2,3}.
The most favourable configuration corresponds to one path (the bottom
one) starting at (1,1) and first going right. Then it jumps to some point
of {2,..., M} x {2} and goes horizontally up to (M, 2). The upper path starts
at (1,2), will also jump and go right up to (M, 3). The constraint that our
paths must be disjoint forces the z-coordinate of the jump of the bottom path
to be larger than that of the jump of the upper path. This corresponds to the
obvious figure 1.

Fig. 1. Configuration of paths in the case k =2 and N =3

This figure suggests that in the Donsker limit of random walks converging
to Brownian motion, we will have
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Hy(M,3) —2M 4 PC)
v M M — o0 2

€ sup (Bi(t) + Ba(s) + Ba(1) — Ba(t) + Bs(1) — Bs(s))

0<s<t<1

where (By, Ba, Bs) is standard 3-dimensional Brownian motion.
For the case of k = 2 and general N, we have the same configuration
except that the number of jumps for each path will be N — 2 so that

Hy(M,N) =2M  a  o(N)
,/M M—oco 2
def a
= sup » (B;(sj—1) — Bj(sj—2) + B;(t;) — B;(t;—1)) (18)
j=1

where (B;)1<j<n is a standard N-dimensional Brownian motion and the sup
is taken over all subdivisions of [0, 1] of the following form:

0=s_1=s9=1tp <51 <11 <82 ko

1
< Kitnv2<sy_1=tn_1=sy =ty =1

Proof of limit (18). Let us first consider the case of Ho(M, N):

Hy(M,N) = maX{Z Wi j,; T, T2 € P(M,N); w1, m disjoint}.

(4,)€m1UT2
Since our paths are disjoint, one (say 1) is always lower than the other (say
mo): foralli € {1,--- , M}, max{j; (i,7) € m} <min{j; (i,5) € m2}. We will
denote this by m; < my. Then, it is not difficult to see on a picture that, for any
two paths m < m2 € P(M, N), one can always find paths 7 < 75 € P(M,N)
such that w3 Umy C mf Unh , ) starts from (1, 1), visits (2,1) then finishes
in (M, N — 1) and 7} starts from (2,1) and goes up to (M, N). Let us call
P(M,N) the set of pairs of such paths (7, 75). Thus

HQ(M,N):maX{Z w; j; (m1,m2) E’P(M,N)’}.

(i,j)Em1Ums
Now two paths (m1,m2) € P(M,N)" are uniquely determined by the non-
decreasing sequences of their N — 2 vertical jumps, namely 0 < ¢; < -+ <
tn—o2 <1form and 0 < 51 <--- <sy_2 <1 for my such that:

— m is horizontal on [ |t;—1 M |, |t; M | ] x{i} and vertical on {|#; M |} x[i,i+1],

— g is horizontal on [ |s;—1 M|, [s;M|] x {i + 1} and vertical on {|s;M |} x
[i 41,7+ 2],

— s; <t;forallie {1,...,N—2}, this constraint being equivalent to the fact
that m < ms.

The weight picked up by two such paths coded by (¢;) and (s;) is
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— w11 + w21 + -+ + W, py,1 on the first floor,

—wi2+ T W M2 T W2+ W2 on the second floor,

— W, M|3 Tt T WM |3 T WeoM),3 + 0+ Wear),3 on the third floor,

— and so on, up to floor N for which the contribution is wsy_,n),n + - +
WM,N -

This yields

N lsj—1M] [t; M]
Hy(M,N) = sup Z( Z wi; + Z W j >

j=1 i:LijgMJ ’L‘:Ltjflj\/IJ

Sj— M
Hy(M,N) —2M al ZLLS;,QJMJ wij = (sj-1 = sj-2)M
P D VM

t;M
n ZE JLtJJ M) Wig — (t; —tj—1)M >

VM

Donsker’s principle states that

ZI‘S]V[J wij —sM d
( S e (B 1y
1SN

where the convergence takes place in the space of cadlag trajectories of the
variable s € Ry equipped with the Skorohod topology. This allows us to
conclude (see [3] for a detailed account on the continuity of our mappings in
the Skorohod topology). O

For general k and N, the same pattern works with &k disjoint paths having
each N — k jumps. This yields the following central-limit behaviour:

Hk(M;/]\]fW)_ - Mioo e Sup Z Z( J p+1 — B, (‘9?*1))) (19)

j=1p=1

where the sup is taken over all subdivisions (s?) of [0, 1] of the following form:
e [0,1], sf“ <sP<shy, sV =0fori<Oand s =1fori>N—k+1.

Now, imitating the argument for the A\, . we obtain that

N) d
G S AM Mk (20)

where we recall that AY < ... < AY are the eigenvalues of GUE(N). In fact,
the previous equality is also true when considering the vector (QéN))lgkg N
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and the corresponding sums of eigenvalues, which yields a representation for
all the eigenvalues of GUE(N).

A representation for the eigenvalues of GUE(N) was already obtained in
[10]. Let us compare both representations. Denote by Do(Ry) the space of
cadlag paths f : Ry — R with f(0) = 0 and for f,g € Dy(R;), define
f®g€Do(Ry) and f© g € Do(Ry) by
fog(t)= inf (f(s)+g(t)—g(s)) and fog(t)= sup (f(s)+g(t)-g(s)).

0<s<t 0<s<t
By induction on N, define I'™) : Dy(R )N — Dy(R )N by

r'f,9)=(f®g,90f)

and for N > 2 and f = (f1,...,fn)

p(N)(f):(f1®---®fN,
F(N_l)(f2®f1,f3®(f1®f2)a-~-’fN®(f1®"'®fN*1)))'

Then the main result in [10] is:
AV S rN(B) (1) (21)

where B = (B;)1<ign is standard N-dimensional Brownian motion and AN s

the vector of eigenvalues of GUE(N). In fact, it is proved in [10] that identity

(21) is true for the whole processes and not only their marginals at time 1.
Thus

d
ANAMN A2 2 VB )+ IV (BY (1) 44+ T, (B)(1).

Comparison with (20) gives
d
oM L rMBYW) + T (B + -+ T (B)1). (22)

This equality in distribution also holds for the N-vector (QIEN))K k<N -

Now let us remark that the definition of the components I’ ,gN) of ')
is quite intricate: it involves a sequence of nested “inf” and “sup”. On the
contrary, Q,(CN) is only defined by one “sup” but over a complicated sequence
of nested subdivisions. We ignore whether these identities are: trivial and
uninteresting; already well-known; true for the deterministic formulas (i.e.,
true when replacing independent Brownian motions by continuous functions)
or true only in distribution.

Our concern raises the question about the link between the I'™) intro-
duced in [10] and the Robinson—Schensted-Knuth correspondence that gave
birth to our 2("). Very interesting results in this direction are obtained by
O’Connell in [11].
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Finally, let us notice that the heart of our arguments to get the previous
representations is the identity (14). The proof presented here is taken from
[5] and is organized in two steps: first the computation of the joint density for
(Hp(M,N))i1<k<n by combinatorial means and second the observation that
this density coincides with the eigenvalue density of LUE(N, M). It would be
tempting to get a deeper understanding of this result. This would all amount
to obtaining a representation for non-colliding squared Bessel processes.

4 Proofs

Proof of Theorem 1. Let us denote by ZU) the matrix (Ag ;A;;)1<k <N SO
that YN-M = Zjvzl 7). Since (Z1)) >, are independent L2 random variables
with commun law Z, the multi-dimensionnal central-limit theorem states that:

M
1 .
i=1

Thus, we just need to check that the covariance structure of Z coincides with
that of X taken from GUE(N). In this case, Cov(Xg p, Xc.a) = 0q,d0c,p for
1<a,b,c,d<N.For Z, COV(Za,b, qu) = ]E(Aa,lAbJAQlAd,l) —04,60c,d4- We
have to distinguish three cases to compute e = ]E(AaJ/ﬁlb,lAcvlfld,l): either
all indexes are equal (a = b = ¢ = d) and e = E(|4,1|*) = 2, or else one
index is different from the three others and e = 0, or else they are equal by
pairs, which gives rise to three more situations: a = b # ¢ = d for which
e =E(|Au1[*)E(|Ac1?) =1, a = ¢ # b = d for which e = E(A2 |)E(A,) =
0 and a = d # b = ¢ for which e = IE(A?LJ)]E(Ail) = 1. In each case,
€ — 0q,b0¢c,d = 0q,d0c,p Which is our result. O

Remark 1. In fact, one can also give an elementary proof by direct compu-
tation on the density of Y™™ just using Stirling’s formula and the follow-
ing asymptotic expansion logdet(Idy + eH) = ¢ Tr H — (¢%/2) Tr H? + O(&?)
for small e.

Proof of Theorem 2. We will write A instead of AMN For 1 <i < N, 1<
J < M, the superscript ¢j when applied to a matrix stands for its entry at line
7 and column j. The value at time ¢ of any process x will be denoted either
x(t) or x;. Let us set

YNM(t) — Mtldy  AA*(t) — Mtldy

) = T T Um

Then

M M
7Y = — § A AT — Mts;s), dZY = — § AR QATF 4 ATk AR,
M i k:1( J) M Al k:1( + )
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which implies

M
g g 1 R R
Az -4z, = 57 > (ARATFG o+ ATRATRG ) dt.
k=1

The quadratic variation follows to be:
L 1Mot o
(Z82 ) = 5 2 [ (AR 0+ A AT s,
k=1

By the classical law of large numbers, we get that this converges almost
surely to:

t t
/ (E(A?Ag'l)ai,j + E(AglAg’l)aij,) ds = / 8ij:0ir ;28 ds = 26,58,
0 0

Note that the previous formula shows that, in the limit, the quadratic
variation is 0 if ¢ # j’ and i’ # j, which is obvious even for finite M without
calculations. However, if for instance ¢ = j’ and i’ # j, then the quadratic
variation is not 0 for finite M and only becomes null in the limit. This is some
form of asymptotic independence.

First, let us prove tightness of the process Z; on any fixed finite interval
of time [0, T]. Tt is sufficient to prove tightness for every component, let us do
so for Z}} for example (Z}} is real). We will apply Aldous’ criterion (see [8]).
Since Z}}(0) = 0 for all M, it is enough to check that, for all € > 0,

lim limsup sup P{|Z);(r+6) — Z3;(7)| > e} =0 (23)
=0 M—oo 7,0<60<8

where the sup is taken over all stopping times 7 bounded by T'. For 7 such a
stopping time, e > 0 and 0 < 0 < 0 < 1, we have

P{ 2 +60) - 23 )] > <} < E((Zr +6) - 23))

1 T 11 11 2 z T 1k 2
= 5—21“3(/7 d<ZMaZM>t) = W;]E</T | A7 dS)

2 M 1k |2 29 1112
< M—€QZE(9 sup ‘AS ‘ ) 26—2]}3( sup ‘AS ‘ )
k=1

0<s<T+1 0<s<T+1

Since ep = E(supgc 1 |AL?) < 00, then

26
limsup sup P{|Z3;(7+6) — Zp;(7)| > e} < sT .
M—oo 1,0<0<48 €

This last line obviously proves (23).
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Let us now see that the finite-dimensionnal distributions converge to the
appropriate limit. Let us first fix ¢, j and look at the component Zy; = (xar +

V=1ya)\/2. We can write
(msym)e =0, (Tar, ear)e = (Yar, yn)e = Z/ ok ds (24)

where o = |A¥|2 4+ |AJ%|2. We are going to consider xys. Let us fix T' >
For any (Vl,...,yn) [T, 7] and any 0 =to <1 < --- <tp, < T, we have
to prove that

]E(exp (iiuj (xM (t;) —2m (tj—l))>)

n

— > exp (Z %ﬂz(tf — t?_l)) (25)

M—oo c
Jj=1

We can always suppose [t; — tj_1| < § where ¢ will be chosen later and will
only depend on T (and not on n). We will prove property (25) by induction
on n. For n = 0, there is nothing to prove. Suppose it is true for n — 1. Denote
by (Fi)i>o the filtration associated to the process A. Then write:

E<eiz;1uj<wM(tj>—xM(tjm)
— ]E<ei2?f vi(zam(ty)—zam(ti—1)) ]E(eil’n(xlw(tn)_xlw(tn—l)) ’ F 1)) (26)

va
We define the martingale M, = e®n®m(t)=3-(zar,200)¢  Hence

E (e (oas(tn)=aar (i) | 7, )_]E<A//\l/:4e'f‘<w,w>iﬁ ] ftnl>
no1
with the notation (z,z)% = (x,z)¢ — (z,z)s. This yields
o B2t DR (e (@t = (be) | 7, ) g
= E(/\//\::”I Cm ftn1> (27)

,2
F(eanoa)e? | —(Eh—th 1))

where we set (ny = e —1. Using that |e* — 1| < |z|el*],

we deduce that
V2 n
|CM‘ K| l'M,aTM> - (t _ t% 1)|eT<1NI,IM>tn71

where K = v2 /2. The Cauchy—Schwarz inequality implies that
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o\1/2 ) . 1/2
E(|¢m|) < K (E(<1’M,«TM>§ZI — (ti _tifl)) > (]E(eVn<IM,EJVI>tn1)> )

By convexity of the function z — €*:

VT2L<$M,$JW>2271 _ (ii g/t" kg ) < ii v2 (tnftnfl)ogs:jgtnaﬁ
e exp Mk:1yn - ap du | < Mk:1e
and thus
]E(el/;‘;(szrM)iZ,l)
o 1 iE( v2 (tnftn,1)0<su2t aﬁ) E( ui(tnftn,l)os.ugt ai)
— e Sustn =E(e Sustn .
h M k=1

Now let us recall that a, = |A%|2+]AJ1|2 which means that a! has the same
law as a sum of squares of four independent Brownian motions. It is then easy
to see that there exists 6 > 0 (depending only on T') such that

]E(exp(T25 sup ai)) < 0.

0<u<T
With this choice of 4,

, Vi(tn—tn,l) sup ai
K'=E(e rersn ) < oo

and thus:

o\1/2
E(|¢um]) < K K’ (E<<$M>$M>§Zl — (2 - ti,l)) ) —0

M—oo

(by the law of large numbers for square-integrable independent variables).
Since My, /My, .| <1, we also have

Mt L
- 0.
M, _, S~
Therefore M
tn L!
B( 5 o | Fi) o0 (28)

In turn, by looking at (27), this means that

. 1 v2
]E(ell/n(ﬂilw(tn)_ﬂilw(tn—l)) |_7_‘75 ) ]L_> e%(ti_tifl)_
" Mo

Now, plug this convergence and the induction hypothesis for n — 1 into (26)
to get the result for n.
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The same is true for ys. To check that the finite-dimensionnal distribu-
tions of Z}; have the right convergence, we would have to prove that:

0

n
1=

vi(zar(ts) — oar(ti1)) + pa (yne(ts) — yM(til))>>

1

N2 2
s exp (Z % (t2 — t?_l)) (29)

M—o0 .
i=1

But since (@, yar) = 0,

2 2
M, = exp <i(z/n:vM(t) + pnym(t)) — %"(IM,:L’M% - %(vayM%)

is a martingale and the reasoning is exactly the same as the previous one.

Finally, let us look at the asymptotic independence. For the sake of
simplicity, let us take only two entries. Set for example x) = Zi} and
yM = ﬂRe(Z}V%). Then we have to prove (29) for our new xps,yp. Since
(xar,ym) # 0, M, previously defined is no more a martingale. But

N; = exp (Z (vnzanr (t) + pnynr (t))

2 2
v,
- 7n<$M7$1V[>t - 7n<yM7y1V[>t - Vn,un<$M7yM>t)
2
is a martingale and the fact that (s, yar)s L 0 allows us to go along the
same lines as before. Moo a
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