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Knight’s well-known theorem says that orthogonal continuous local martin-
gales, when time-changed by their brackets, become independent Brownian
motions (see [1], [7]-[11]). What can be said when the given local martingales
are not orthogonal? The standard way to deal with this case is to orthogo-
nalize them, for instance with the Gram-Schmidt algorithm. This is indeed
what was done by Knight himself when first using his theorem (see [9], The-
orem 2.2); but he was working in a particular setting (Hunt processes) and
did not give explicit formulas. Other examples where this orthogonalization
is used are references [3] and [12].

The goal of this short note is to provide expressions as explicit as possible
to describe what is obtained when Knight’s theorem is applied after orthogo-
nalizing a family of continuous local martingales. Note that to orthogonalize
the family of martingales we make use of some “local transformation” based
on the matrix of predictable quadratic characteristics.

If A is a matrix, A’ will denote the transpose of A. We fix a filtered
probability space (£2, F, (Fi)t>0,P) satisfying the usual conditions. We start
by recalling Knight’s theorem:

Theorem 1. Let M = (M(t))t=0, M(t) = (Mi(t),..., Mup(t)), be a n-
dimensional continuous local martingale with orthogonal components, starting
from zero. Suppose that on the same filtered probability space there exists a
standard Brownian motion 8 = (8(t))i>0, B(t) = (B1(t), ..., B (t)), starting
from zero and independent of M.

Then the process B = (B(t))t>0, B(t) = (Bi(t),..., Ba(t)),

B (t) {Mk(’rtk% if <Mk7Mk>(oo) > t, (1)

k =
Mie(00) + Br(t — (Mg, My)(o0)), if (Mg, My)(o0) <'t,

1s a Brownian motion, where
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mF =inf{s : (M, My)(s) > t}.
Remark 1. The one-dimensional version of this result was proved in [2], [4].

Remark 2. The processes By and B are Brownian motions relative to their

natural filtrations (ftB "),50 and (V, FP "), respectively.

t>0 t>0

Now we are given M = (M (t))1>0, M (t) = (M1(¢),..., My(t))', a column-
vector of continuous local martingales starting from zero.
Denote by

AN = (M3, M) ), -
the matrix of predictable quadratic characteristics of M (see [5], [6]), and set

o= (Tgn) 8

n

a(t) = te{M) () = S (M, M) (1)

i=1

where

The matrix C' is predictable symmetric non-negative. There exists a pre-
dictable orthogonal matrix 7" and a predictable diagonal matrix D such that
T'CT = D = (di)1<i<n, (3)

where all d; > 0, Q-a.s., where @ is the measure on the predictable o-field
such that dQ = da x dP. The matrix T' can be chosen predictable because its

columns are the orthonormal basis of eigenvectors of C'; and d;,i = 1,...,n,
are the eigenvalues of C.

Theorem 2. Let M = (M(t))i>0, M(t) = (Mi(¢t),...,My(t)), be a n-
dimensional continuous local martingale starting from zero, with matriz C
of predictable local quadratic characteristics (see (2)). Suppose that on the
same filtered probability space there exists a standard Brownian motion 3 =

(B(t)) =0, BE) = (B1(t),...,Bn(t)), starting from zero and independent of
M. Then

(i) the process X = (X (t))iz0, X(t) = (X1(t),..., Xu(t))', given by

X(t) = /0 T'(s) dM(s) @)

is a n-dimensional continuous local martingale with orthogonal components;
the matriz of predictable quadratic characteristics of X equals

w0 = [ D) = ([ ac) wi) 5)

It
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(i) the process B = (B(t))i>0, B(t) = (Bi(t),...,Bn(t)), is a n-dimen-
stonal Brownian motion, where
{X/f(Ttk% if <Xk>X/€>(OO) >,

B =
() Xk (00) + Br(t — (Xg, Xi)(00)), if (Xk, Xk)(00) <,

(6)
t
(0, X0(0) = [ duls) dafs)
0
8 = inf{s : (X, Xp)(s) > t}.
Proof. (i) The equality E[X(T)X'(T)] = E[{(X)(T)], valid for any bounded
stopping time 7', and (3) imply that

(X)) = (K X)(0), i s = / T'(s) d(M)(s)T(s)

_ / t T'CT(s) da(s) = /0 t D(s) da(s)

0

_ ( /0 Cdis) da(s)>1@<n.

Hence (5). Since the matrix (X) is diagonal, the components of the martingale
X are orthogonal.
The assertion (ii) follows from (i) and Theorem 1. a

Remark 3. Formula (4) defines a “local transformation” of the martingale M
to a martingale with orthogonal components.

Remark 4. Relations (4), (6) imply that
M(t) = /OtT(s) dBo (M, M)(s), t>0,
where
Bo (M. M)(s) = (Bi((M1.M1)(), - B (M0, M,)(5)) )

Remark 5. An original extension of Knight’s theorem for a finite or countable
family of continuous local martingales M;, M», . .. such that (M;, M;) = 0, for
all i # j, is given by Kallenberg ([7], Proposition 16.8). He uses an isometry
between Gaussian processes and some continuous martingales to obtain the
independence of processes like By, Ba, ... in (6); this provides a new proof of
Knight’s theorem, in a coordinate-free framework. Using this, Theorem 2 can
be extended to the case of Hilbert-valued continuous local martingales.
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