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1 Introduction

The Brownian sheet is a centred Gaussian Process indexed by s = (s1,52) €
Ri. Its covariance is given by

cov(W(s), W(t)) = (s1 At1)(s2 Ata);

this and path continuity fully define the process.

This note concerns bubbles; these are components of {t : W(t) # 0}. We
think of them as natural higher dimensional time analogues of excursions
away from 0. We shall refer to an z-bubble for x > 0 as a bubble on which
the maximum value taken by the Brownian sheet lies in the interval (z,2z).
For the restricted purposes of this article we will also require that bubbles be
components that are entirely contained in the rectangle [0, 1]2. In referring to
components whose maximal value is in the interval (z,2z) but which are not
necessarily contained in [0, 1]? we use the term x-component.

The local time (at zero) for rectangle [21, 2] X [y1, yo] is given by

Y2
L([z1, z2] x [y1,y2]) —1t1l%1%/ /y1 Tjw (s,1)<= dsdt

where I denotes and will denote the indicator function. Of course it has to be
proven that this limit exists (see e.g. [E], [R]). In fact these works show that
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the function L is a continuous function for the four arguments x1, z2, y1 and
y2 and that local time yields a measure L(ds,dt) = dL(s,t) supported on the
0-level set. Sometimes we will regard time rectangles as intervals in two space
and write [x,y] instead of [x1, z2] X [y1, y2]. Always it will be understood that
x1 the first component of x is less than or equal to y; the first co-ordinate of y
and similarly for the second co-ordinates. The results here are proved directly
for the local time for [0,1]2, L = L([0,1]?) and for components contained in
this rectangle, but it will be clear that the arguments and techniques extend
to arbitrary bounded time rectangles.

The Lebesgue measure of the time that the sheet spends at zero is zero.
Nonetheless we think of L as measuring the amount of time spent around
zero. For Brownian motion there is a clear and beautiful theory relating local
time to excursions (see e.g. [RY], chapters VI and XII, or [RW], chapter VI,
especially pages 414-424) and it is well known, for instance, that as « | 0 the
number of excursions by time ¢ of Brownian motion from 0 having maximum
in (z,2z), (Ny(t)), satisfies

N, (t) — iL(t) L0, (1)

as z tends to zero. Here L(t) denotes the local time of the Brownian motion
over the interval [0, ] defined in an analogous manner to the above.
We wish to prove:

Theorem 1. Let N, be the number of x-bubbles of a Brownian sheet, and let
the local time of the Brownian sheet on [0,1]? be L. Then

23N, — c/ stdL(s,t) == 0, (2)
[0,1]2

as x tends to zero, for some strictly positive constant c.
This result and Corollary 2 (proven in Section 1) with scaling easily lead to

Corollary 1. Let M, be the number of bubbles of a Brownian sheet which
have maximum value greater than x and let the local time of the Brownian
sheet on [0,1]2 be L. Then

3 M, — c’/ stdL(s,t) 250,
(0,1]

as x tends to zero, for some strictly positive constant ¢'.

Corollary 1 was conjectured in [Kh]. In that paper it was shown that this
conjecture is of the right order in the sense that for all € > 0, as x — 0,

pr — pr
2 M, 250 and 22 EM, 25 .
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Many of the ideas used in this note originate in that paper.

In the remainder of the introduction we will give our guiding heuristic
as to why this should be true and then discuss the overall approach to the
problem that we will follow.

One way to see (1) or at least to see why N, the number of excursions
having maximum in (z,2z) contained in interval (0,1), should be of order
1/z is to note that when Brownian motion hits, say, 2 then it has chance 1/2
of returning to zero before reaching (2x,00). One would expect then that a
reasonable proportion of time spent by Brownian motion in [0, z] would cor-
respond to time for excursions to [z, 2z]. But the existence of a continuous
local time at 0 for Brownian motion means that the time spent in [0, 2] up to
time 1 is 2L(1) + o(z). Furthermore the length of an excursion having maxi-
mum value in [z, 27] is of order z%. Dividing #L(1) by 2% almost gives us (1).
Given the linear time this heuristic can easily be turned into a rigourous proof
of (1). For (2) the heuristic is similar with the expected size of a bubble having
maximum size in [x,2x] now being (22)? = 2% instead of z2. But it is not so
straight forward to construct a proof.

Our approach is first to remove some troublesome extreme cases: we show
that there are “not too many” z-bubbles of size < va? for v small, since this
would require many large deviations for the Brownian sheet, and that there
are “not too many” x-bubbles of large diameter, meaning of diameter > Mx?
for M large.

This reduction means that the bubbles that count are for the most part
regular-sized components. Locally (for small z) the Brownian sheet in square
[t1,t1 + Ka?] X [ta, t2 + K2?] is (after due rescaling of time) like the difference
of two independent Brownian motion’s process X (s,t) = B(s) — B’(t) where
the Brownian motions are of speeds t5 and ¢; respectively. The reason that our
result concerns || 0,1]2 5 dL(s,t) and not L comes from this time inhomogeneity
of the process.

The difference of two Brownian motions process has a nice bubble theory
discussed in [DW], [DW2] and this enables us to compare as x — 0, the
distribution of the number of z-bubbles of area in [yz*, co] entirely contained
in [t1,t1+Kx?] x[t2, ta+ Kx?] conditional on W (t1,t2) = yz to the distribution
of the number of 1-bubbles for X contained in [0, 1] of area at least v, given
X(0,0) =y.

As an additional hygene measure we also show that the number of x-
bubbles near the co-ordinate axes is small. The basic argument then is to
divide up [g, 1]? into a grid of rectangles which are small (though their dimen-
sions will not depend on x). On these small rectangles the Brownian sheet
will be almost time homogenous. We will then divide up a given rectangle
R into a grid of horizontal spacing length c;2? and of vertical length cox?.
We will argue that if the (i,j) grid-rectangle has bottom left vertex t;z, then
for some function g, the number of bubbles in R is approximately equal to
>k 9(W(t;1/x)) for some bounded function g of compact support. We then
employ the following simple result,

0,1]
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Lemma 1. Let g be a bounded function of compact support. For a rectangle R
bounded away from the azes z'f R is divided up into a grid {t;i} of horizontal
spacing c1z? and vertical cox?, then

1 oo
25 Zg (tjr)/z) converges in probability to —— (/ g(u)du)L(R)

C1C2 0

as x tends to zero.

Proof. We fix an interval [— K, K] and consider the bounded Borel functions
with this interval as their support. We identify this vector space with the
Borel measureable functions on [-K, K]. Let H be the collection of bounded
Borel functions g on [- K, K] so that

1 oo
25 Z (tjx)/z) converges in probability to —— (/ g(u) du)L(R)

C1C2 0o

as z tends to zero. By linearity of the sums and the integral we immediately see
that H is a vector space. Furthermore, as is easily seen by a second moment
argument, the result holds true for functions of the form g(u) = I, <u<ess
—K < ¢ < cp < K (where Iy denotes an indicator function). This includes
constant functions. Also if g, is an increasing sequence of functions n H
converging pointwise to bounded function g, then by bounded convergence

/gn(u) du — /g(u) du

Equally the expectation of x® ik W (tjk) /) — a3 >k 9n(W(tjx)/x) con-
verges to 0 as n — 0o. We conclude that under these conditions g must also be
in H and so as a direct consequence of the function version of the Monotone
Class Theorem (see e.g. [RY], Theorem 0.2.2) one concludes that for every
Borel function g supported on [—K, K] the lemma holds. The entire lemma
follows by the arbitrariness of K. a

The paper is planned as follows: Section 2 is devoted to establishing that
one may discard from consideration bubbles that are of too small an area, of
too large a diameter or that are too close to the time axes. The third section
considers the conditionally expected number of z-bubbles, reasonable in the
above sense, that occur in a time rectangle [t1,t1 + K2 /to, ta, ta + K22 /t1]
given that W (t) = yx. Finally the elements are gathered together to finish
the proof of Theorem 1 in the final section.

I wish to thank the anonymous referee for a heroic effort.

2 Section Two

Loosely speaking, we wish to show that “most” z-bubbles contain a square of
time of side length of the order x2. We also wish to show that “most” bubbles
of size x are of diameter of the order 22 and not close to the time axes.
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Proposition 1 below bounds the number of z-bubbles having small area.
Essentially it follows because a bubble with a small area requires extreme
variation in the sheet.

Corollary 2 below bounds the number of z-bubbles close to the axes, while
Corollary 3 deals with bubbles of large diameter.

Proposition 1. For all § > 0, there exists € > 0 so that the expected number
of x-components that attain value x within [0,1]% and do not contain a square
of side z%¢ with a vertex within [0,1)? is bounded by J/z>.

Remark 1. The methods used in the proof of this proposition apply equally
well if the Brownian sheet is replaced by the difference of two Brownian mo-
tions. The proof of this proposition thus implies that for the difference of two
Brownian motions and a nonrandom z the number of z-components on any
bounded rectangle is a.s. finite.

This proposition is proven by showing that corresponding to each bad or
small bubble is an “extreme” excursion for a Brownian motion

Bo%(t) = W(s,t), t=0, or BY(s) = W(s,t), s>0.

Note in this proposition we are considering bubbles that are not necessarily
strictly contained in [0, 1]2.

We easily obtain the following corollary.

Corollary 2. For all 6 > 0, there exists € > 0 so that the expected number
of x-components that attain value x within [0,e] x [0,1]U[0,1] X [0, €] 4s less
than &/x3.

In turn Corollary 2 begets

Corollary 3. For all § > 0, there exists M < oo so that the expected number
of w-components attaining value x within [0,1]? and of diameter > Mxz? is

bounded by §/x>.

We now set ourselves to showing some technical results with the ultimate
goal of proving the above results.

Definition 1. An excursion e = (e1,e2) of mazimum in (x/2,2x] for a Brow-
nian motion B, is in A(z,n) if
x
sup 1B(p) = Ba)l > 55 -
e1<p<q<es, [p—q|<a?27"

Lemma 2. For a Brownian motion of speed o < 1, there exists a strictly
positive constant k (uniformly over speed o < 1) so that the probability that
an excursion whose mazimum s in [x/2,2x] (randomly chosen according to

excursion measure) is in A(z,n) is bounded by e=2"F.



Brownian Sheet Local Time and Bubbles 201

Proof. By scaling it suffices to treat the case ¢ equal to 1 and so for the
proof B will be a speed one Brownian motion. Before directly considering a
Brownian excursion we deal with Brownian motion on time interval [0, x%2"].
We choose this time interval which is very long for an excursion since the
probability that a Brownian excursion whose maximal value lies in (z/2,2x)
should have lifetime greater than (2" — 1)a? is certainly less than K’ e
for finite strictly positive constants K', .

Let T = inf{t : |B(t) — B(s)| > x/32 for some s € [t — 2?27",]}.

Let S =inf{t > T : t € 2?27 "Z} be the first time after T that is in the
lattice 2227"Z.

By the strong Markov property and symmetry, we have

P{ sup \BS—BS\>£ ’.7-‘;,}21/2.
S—2-222—"Ls<S 32

Thus for a Brownian motion B

T

)= P{T <227}

P{Sup0<\p—q\<w22*"0<p7q<w22+” |Bp - Bq‘ >

<
S2 P{Ut€r22*”Zﬂ[O,zr"2”+z?) ‘/t}
(where V, is the event {sup,_o,20-n<s<, |Bs — Byl > 2/32})

< 3 x 4" P{Viy29-n}

<6x4"P{N(0,1)> ‘/Q_n}

322

< K4n672n/4096 g Kechn.
Given this we note that with probability bounded away from zero, B will
begin an excursion from 0, having maximum value in [x/2,2z], in time [0, 2]
and that, outside of probability Ke~¢2" this excursion will be completed by

time 222", Thus the claimed result is shown since the inequality need only be
proven for large n. O

Corollary 4. For s € [0,1], let Z(s,n,h) be the number of excursions
in A(x,n) by Brownian motion B>" that originate in [0,1] (similarly for
Z(s,n,u)). Then

E Z(s,n,h) + Z PGl
Z (5771, )+ (S’n7u) X T
s€x22-"2ZN(0,1]

Proof. By symmetry we need only consider the expectation of

Z Z(s,n,h).

sex?2-"7ZN(0,1]

Fix s € 2227"Z N (0, 1]. By Maisonneuve’s formula for Brownian excursions
from zero and the bound of Lemma 2,
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n 1 n 1 1
—k2 h,s e k2

where E[L'lhs] is the local time at zero for Brownian motion B*". Thus
n K 1
—k2 2
E Z Z(s,mh)} <e F(m Z \/?)
s€x22-77ZN(0,1] s€x22-"7ZN(0,1]
From which the result is immediate. O

Recall B5* = W(s, .), B*" = W(.,t). For, say, B>" with s a fixed
positive, we want to consider how many excursions e = (e, e3) of B*" to a
maximum value in (z/2,2z) are such that

X
sup Sup |W(57p) - W(S/ap) - W(Sa q) + W(SI7Q)‘ = ﬁ .
0<p— q<2 "x?p, 0<|s—s'|<27 a2,
qce 5<3/2

(3)

Let this number be X *(x,n). Let the analagous quantity for B*" be Y*(z,n).

Lemma 3. For s fized and positive, 0 < = < 1 and X*(z,n) as above,
E[X*(z,n)] = E[Y*(z,n)] < ke~ " for finite and positive k, ¢ not depending
onzx<1.

Proof. Let us define, with respect to filtration
Fr= {W(tl,tg) 0<t1 <00,0< e 7‘},
stopping times (73);>0 by Tp = 0 and

T; = inf{v > T;_1 : 3T;_1 < u < v such that, for some |s — 5| < 2712
W (s,u) — W(s,v) — W(s',n)+W(s' v)| > x/32}.
Then
X®(z,n) <sup{j:T; <2}.

But P{T% < y} (by the Orey—Pruitt maximal inequality, [OP]) is domi-
nated by

8(5m= +1) P{IN(0.272"2%)| > 2/32}

<K(5=

T —|—1) -2 <Ke_02n for y < 2.

Since T; — T;_1 are i.i.d. random variables the result follows from standard
arguments on geometric random variables. a
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The basic idea underlying the proof of Proposition 1 is that for every x-
component G in which W attains value z inside [0, 1] (even though G itself
may not be entirely contained in [0, 1]?), there is by definition t = (t1,t2) €
G N [0,1]2 so that W(t) = z. If |G|, the area of G, is small then it must be
the case that for

vy = inf{t > t1 : |W(t,t2) — x| > z/8}
vy = inf{t > to : |W(t1,t) — x| > x/8},

either:

(i) min;(v; — t;) is small;

(ii) we have a large white noise contribution for some rectangle from
bottom-left vertex equal to t.

This will enable us, for some s and some positive integer n to associate to
G an excursion to x/2 for B*%" or B&:* for which there is extreme behaviour
for sy, € 22727 covered by Lemma 3 or Corollary 4.

We will now make this specific.

Proof of Proposition 1. Suppose a z-component as above, GG, has area less or
equal to £2272N0 where 270 will be the ¢ in the statement of the proposition
and will be large but not depending on z. Choose in an arbitrary manner t
in G at which the value of the sheet equals z. For t, v, v2 as above either

minv; — t; < 2227 No (4)
(3

or

v; —t; = x22~No fori=1,2, but )
5
W(S) =0 for some s € [tl,tl + 1‘2271\[0] X [tg,tg + I227N0].

To prove the proposition it will suffice to bound the expectation of the number

of G, t for which (5) is true and to bound the expectation of the number of

G, t for which (4) holds.

We first treat case (4). We split it up into

min(v; — t;) € (z227 "+ 22277 for n > Np.
We suppose without loss of generality that
vp —t; = min(v; — t;) € (x22- "D 2297"),

Let s = (s1,s2) be the “smallest” element of Z2222~("*1) in the square
[t1,v1] X [ta2,ta + v; — t;]. We claim that for Brownian motion B*2"" there
must be some kind of large deviation associated with the excursion of B%2:"
containing t; (which excursion necessarily corresponds to a line segment con-
tained in G). Necessarily the time point (t1, s2) € G and |W (ty, s2) —z| < /8.
If for some s € [t1,v1], |W(t1,s2) — W(s,s2)] > 2/32, then the excursion
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of B**" containing time point ¢; is in A(x,n). Suppose on the contrary
that for all s € [t1,v1], |W(t1,s2) — W(s,s2)] < x/32 and in particular
|W(t1, 82) — W(’Ul, 82)| < LL’/32

In this case we have |I/V(2517 52) — VV(’Ul7 52) — W(th tg) —|—W(U1, tQ)‘ 2 l‘/8—
x/32 > x/32 and the excursion of B2"" containing ¢; makes a contribution
to Y*2(z,n) or to X*2(x,n). By Lemma 3 and Corollary 4 we have that the
number of such excursions is bounded for any fixed s € (2?/2")Z by

1 - ron
2_2271,('%6 +HIGC2)7
x xT

summing over n > Ny we obtain a bound < §/(1023) if Ny has been fixed
sufficiently large (independently of ).

Now consider (5). As before we let s = (s1, s2) be the smallest element of
2~ WNotD) 227, in [ty t1 + 27 Noa?] x [tg, ta + 27 Nox?].

Now, for all ¢t € [ta,ta + 27N22], we have (by the definition of vs)
that W (t1,t) > Tx/8 and < 9z/8. In particular W (ty,s2) = BL:"(t;) €
[72/8,92/8]. Thus, provided that for e the excursion of B2 to x containing
time ¢; it is the case that,

c2™

sup |B*>"(p) — B*>"(q)| < /8,
0<p<g<2~Noz2 p, gce
we have
6x 5o h 26—N,
§<B2’ (s) <10z/8 for all s € [t1,t; + x?27 0],

So, if for some u = (uy,u2) € [t1,t1 + 2%27N0] x [to,ts + 2227N0] we have
W(u) = 0, then
W(ul,ug) - W(ul, 82) - W(tl,UQ) + W(tl, 82)
<0—6x/8—Tx/8+92/8 = —z/2.

Thus again we have for excursion e of B*? containing ¢;, that

sSup sup ‘W(p> t) - W(p> 52) - W(Q7t) + W(q> 82)| = iL'/2
p,q€e [t—s2|<z22~No
lp—q|<z?27No
The expected number of such excursions again by Lemma 3 and Corollary 4
(and hence the expected number of bubbles of size < 272V0/23) is bounded by

24N e_"zNO+ —r2No ) 5
z2 T ¢ 1023

if Ny has been fixed sufficiently large. O
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Proof of Corollary 2.

E[# of z-bubbles]

1
<3+ E[# of z-bubbles containing a square of side 2*N°x2]
x

< % +E[|{t €[0,2): W] € [0,2a]}|] /22 Nout

K
< pel
By the scaling properties of centred gaussian variables the process defined
n (s,t) € [0,1]?
Y (s,t) = e 2W (es, t)

is equal in law to W. Thus the expectation of the number of z/c'/2-bubbles
attaining value 2/¢'/2 in [0, 1]? for process Y = expectation of the number of
x-bubbles of W attaining value z in [0,¢] x [0, 1]. But the former quantity is

bounded by

K ke3 )

N
(x/e1/2)3 3 10z3

for € small. Thus by symmetry the expected number of z-bubbles attaining

value z in [0,¢] x [0,1] U [0,1] x [0, €] is bounded by §/(5z3) if € is small. O

Proof of Corollary 3. Given § > 0, choose € so small that the expected number
of z-bubbles attaining value z in [0,¢] x [0,1] U [0,1] x [0, €] is bounded by
§/(233). Also choose Ny sufficiently large that the expected number of -
bubbles attaining value x in [0, 1]? that do not contain a square of side 222~ "o
with bottom-left vertex in [0, 1]> where W = z is bounded by §/(x33).

Now consider a bubble G which is not in the above two collections. By
definition G contains a square of side length 22270 and centre within [e, 1]2.
Within this square is (at least) one point of z22~(No*tD7Z, Thus every such
bubble G of diameter at least Mz? contains a point s in 222~ No+t17Z, so that:

(1) 0 < W(s) < 2x;

(ii) s is not surrounded by a negative W circuit in

S1 — 3 751+ 3 3 782+ 3

Mz? M xT { Mz? Mz?
X |89 — .
But by [K], proof of Theorem 1.1, page 269, the expected number of such
points is bounded by

52

2(z22~ Notl) . F(Me)

where F(y) — 0 as y — oo. The result follows by taking M so large that
F(Me) < 6/(22No3). O
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3 Section Three

In this section we wish to establish a weak convergence result on a bounded
functional of continuous functions from an interval [0, K]? to the real line.
While this functional will not be continuous everywhere we will show that it
is a.s. continuous at sites chosen according to the difference of independant
Brownian motions process. The importance of this is that locally the Brownian
sheet resembles this process. This part of the paper relies heavily on the
Dalang—Walsh algorithm introduced in [DW?2]. In this section and only this
section bubble will denote a component without spatial restriction.

We consider the expected number of z-bubbles of area greater or equal to
vya*/(t1t2) contained in

K2 K2
ty, t1 + X |ta, ta +
to tq

given that W (t1,t2) = cx, for = tending to zero. K will be large but fixed,
c fixed, t € [¢,1]2, ¢ > 0. Every thing in this section is a simple derivation
from ideas and results of [DW2].

We wish to show that as = tends to zero this tends to the expected number
of (size at least ) 1-bubbles in [0, K]? for a process X (s,t) = B(s) — B'(t)
where B, B’ are standard independent Brownian motions conditioned on
X(0,0)=c.

There are various problems to address. Firstly, while it is trivial that,

1 ] s
V(Sl,SQ) = EW([tl +1‘2§,t2+1‘2 f:D

s€[0,K]?

conditional on W (t1,t2) = cz tends to X (s)|seo,x]> conditional on X (0,0) =
¢, the two dimensional data functional F(w) equal to the number of 1-bubbles
of area greater or equal to y contained in [0, K]? for w need not be continuous.
It might be that as w, — w uniformly in [0, K]?, in the limit a single w,,
bubbles splits into 2 distinct (necessarily touching) w bubbles. Equally it could
be that w,, bubbles of area strictly less than « converge to a w bubble of area
equal to 7. It could be that w, bubbles which are not contained in [0, K]?
“converge” to a w-bubble entirely contained in [0, K]? or that w,(1 — &,)
bubbles which are not w,, 1-bubbles “converge” to a 1-bubble for path w.

The latter difficulties could be dealt with via a “smoothing” of our path
functional but the first is difficult: we do not know whether distinct positive
bubbles may touch for the Brownian sheet. Nevertheless we shall see that the
path functional for w chosen according to a law of X (conditional on X (0, 0))
is a.s. continuous at w.

In considering a component G of process X (now considered to be indexed
by (—o00,00)?), [DW2] note that if the (a.s.) unique maximum of G occurs at
t = (t1,t2) then if we consider X (s,t3) = B(s)—B'(t2) for s in a neighborhood
of t1, we see that B must assume a local maximum at t;. We define (s{, s3) to
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be the largest interval on which X (s1,%3) > 0. Necessarily B(sl) = B(s}) =
B'(t2) and (s},s}) is an excursion of B above value B’(t).

Similarly we have that B’ has a local minimum at ¢ty and we have t, €
[s2, 53], an excursion of B’ below value B(t;). Let us call = {t;} x [s?, s3] U
[s1,83] x {ta} the cross of G and let [si, s3] x [s%, s3] be the rectangle generated
by G.

Lemma 4. A.s. every positive bubble G is such that a.s. for all 3 > 0 there
is a circuit surrounding the rectangle R generated by G which is within 3 > 0
of R and on which X < 0.

Proof. Let the (countable) values of the local minima of B’ be y1,y2, - - -, ¥, - - -
With probability 1, for all i the excursions e of B above y; have the prop-
erty that if e = (e1,ez2) then for all § > 0 there exist t; € (e; — 3,e1) and
to € (62,62 + ﬂ) so that B(tl) < Yi, B(tg) < Y-

Similarly for excursions ¢’ of B’ below local maxima x1,xo,... of B, we
have if € = (ef,e}) then a.s. for all § > 0, there exist ¢} € (] — 5,¢€}),
th € (eh, el + B) so that B'(t) > x4, B'(t5) > ;.

Thus considering X = B — B’ for a cross C = [si, s3] x [s2, s3] centred at
t = (t1,t2), we have for 3 small there exists g} € (s} —3,5%), g5 € (s, sb + )
so that Bg}) < B(tz), Blg}) < B(tz), B'(g?) > B(t:), B'(g3) > B(t).
Now B(t;) is the maximum value of B on [si, s3] and if 3 is small we will
have B(s) < B(t1) on [si — 3,53 + 3] and so X(s,t) = B(s) — B'(t) will be
strictly negative on

51— B,sa+ B x {gf}  and s =853+ 5] x {g3}.

Similarly X will be strictly negative on

{91} x[si = B3+ 6] and  {go} x [s7 — B, 53 + ]

so we can take as our circuit

({g1} x [g7.931) U ({92} x [91.93)) U ([g1, 93] x {gi}) U (l91. 93] x {g3}). O

Lemma 5. For X restricted to a square S, any two distinct x bubbles are
a.s. non touching.

Proof. For simplicity we take the square to be [0,1]? and we consider two
distinct bubbles contained in this square. In general the restriction to [0, 1]?
means that the crosses may intersect [0, 1]?, the boundary of [0, 1]2. But still
the proof of Lemma 4 applies to the parts of the cross contained in [0, 1]2.
Let the two z-bubbles be G1, G2. Let the crosses corresponding to G; be C;.
First C7 cannot cross Cy as this would mean that G; and Go are the same
component, nor can C7 and Cs touch as a moments thought rules out. If
the rectangles R; generated by G; are disjoint then Lemma 4 yields a circuit
separating Ri, Re on which X < 0 and so we must have that G1, G2 are
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a strictly positive distance apart. So we suppose neither of these. Now the
intervals (si!,si!) and (si2,s1?) are excursions above a certain level. Thus
if these intervals overlap, it must be the case that one interval contains the
other. Similarly for (s3',s3') and (s%2,s3?). A moments thought convinces
that we must have either the intervals defining R; contained in those defining
Rs or vice-versa, with strict inclusion (we are considering the case R; do not

intersect 9]0, 1]?). We suppose without loss of generality
(si',s5') D (s1% s5%) and (s1',s3") D (s1?,53%).

In this case there is a circuit D surrounding Cs and disjoint from C; on which
X < 0 by Lemma 4. Thus G2 C D is contained in the interior of D and hence
is a strictly positive distance from G7. The cases where s;' = 0 or 1 are dealt
with similarly. Thus in considering z-bubbles on a square [0, 1]? for process
X, we have a.s. (see the Remark after the statement of Proposition 1) that
there are only a finite number of x-bubbles G, ..., Gr and associated with
each G is an exterior circuit C* and interior circuits C7, j € I(i)1 so that
X <0on C% €7, 5 € I(i) and if X(t) > z for t inside C* and outside C7,
j € 1(i), then t € G;. O

‘We wish to show:

Lemma 6. If w : [0,m] — R is chosen according to the law of X, then for
a.e. w if G1,Ga,...,Gr are the z-bubbles of w of area at least yx*, and if
wy, — w in uniform norm, then, for all i, |G;| # va* (here | .| denotes area)
and for n large we have w, has precisely R z-bubbles G7,...,G% of area at
least vz so that:

(i) for alli, G; C (0,m) < G C (0,m);
(i) for alli, |G?| — |G4l.

Proof. It is easy to see that a.s. no z-bubble has area exactly yz*, we leave
this to the reader. Let the (a.s. finite) z-bubbles of w be G1,Ga, ..., G, 7 > R.
We can and will assume that m is equal to (1,1) and also the following:

(i) GiNa[0,112 # ¢ = w(t) > 0 for some t € G; N A0, 1]%

(ii) G, satisfy the circuit property above;

(iii) there exists o > 0 so that w has no bubbles having maximum value
in [z —o,x+ ol

(iv) {t: w(t) =0} =0.

Obviously by compactness for n large w,, < 0 on each circuit C?. Also for
each i if we choose t; € G; with w(t;) > = + o (o as in (iii) above), then
wp(t;) = x 4+ o/2 for n large. Define (for n large) G?* to be the az-bubble of
w,, containing t;. By the observation for circuits C?, we have that for n large
these r-bubbles are distinct. We first establish that for n large there does not
exist a further distinct z-bubble G7', ;. Suppose not. Taking a subsequence
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if required, we can assume that there exist t]',, for each n large so that
7y ¢ Uiny GF and wa (t),) > .

If t,41 is a limit point of the t}, |, then w(t,11) > x. And so by (iii)
t,+1 belongs to bubble G; for some i. So there exists a path ~; from t; to
t,+1 on which w > 0 implies that for n sufficiently large we have (by uniform
convergence):

(i) wn(s) >0 on ~;
(ii) wy(s) > 0 on a neighbourhood of t,41.

This implies that for infinitely many n we have t;’,; € G7'. This contra-
diction implies that for n large there are only r distinct bubbles for w,,.
By a similar argument it is clear that

limsup |G}| > |G, it remains to show: limsup |G}| < |G,
We assume not. Taking a subsequence if necessary we assume
Vn, |G} > |Gi| + ¢, for some ¢ > 0.

By property (iv) and uniform convergence we have that there exists h > 0 so
that for large n
[{t : Jwn ()] < 3R} <¢/3

and X
‘th’ < ‘Gz‘ +C/3.

where hG; = {t : d(t,G;) < h}.
So we can find for all large n, {7 € G}'. So that

w™(t) = h and dt?,Gi) = h.

Let t2° be a limit point of the . Then w(t5°) > h > 0, t2° ¢ G;. But therefore
t$° is in a z-bubble for path w of size at least h/2 distinct from G; this yields
a contradiction in the usual way. a

From this and Prohorov’s theorem (see e.g. [EK]), we deduce:
Theorem 2. If X™ is a process on rectangle [0, m] C [0, M]? so that

X"0,0) =z, — =
X"(s,t) = BY(s) + By (t) + V(s,t) + X™(0,0)

where
) D ) .
BT, BY are independent and BT, By — Brownian motions Bi, By

and
sup |V (s, t)] 2o,
s,t
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then the distribution of the number of 1-bubbles of X™ on [0, m] which have
size at least v and are contained in (0,m) converge to the distribution of
the corresponding number for the difference of Brownian motions process
X (s,t) = B1(s) — Ba(t) + «.

Define g7(z, m) to be this number we record some elementary results and
bounds for g.

Lemma 7. (1) ¢g7(c,m) is continuous in m for ¢, v fized.
(2) For ¢ such that (|c| —2)% > my + mao,

Yeom) < M2 oo ( —Ued =2
gle. )gx/im p(2(m1+m2)>'

We relate Theorem 2.1 to the Brownian sheet.

Lemma 8. Fiz € > 0. Let (as n — o) t" — t € [¢,1]?, z,, — 0, m}, m% —
M, ¢, — c then the conditional expectation of the number of x,-bubbles
contained in

(7,7 + 2% (m] /ty, m3 /1))
of size > yxt /(t1t2) conditional on W (t") = c,x, converges to g7(c, m) as n
tends to infinity.

‘We also have:

Lemma 9. For all t € [¢,1]?, M, ~ fized and = small we have that the con-
ditional expectation of the number of x-bubbles contained in

(t,t + (M/ta, M/ty)z?)
of size > v/(tita)x* conditional on W(t)/x = K is bounded by

(cM?/7) exp(—(K —2)*/(5M))

for some ¢ not depending on K, M.

4 Section Four

We wish to prove Theorem 1. It will be sufficient to show that for § fixed
but arbitrarily small, we can write N, as N + N, where for strictly positive
constant ¢(d), N.x3 — ¢(6)L — 0 in probability and where N/ is a positive
random quantity of expectation bounded by C'§/x® where C' depends neither
on x nor on d.

Let us fix 0 < § << 1. Now fix € > 0 so that the expected number of
x-bubbles which attain value x within [0, €] x [0,1] U [0, 1] x [0, £] is less than
§/(101923). By Corollary 2 such ¢ exists. Let m’ be such that the expected
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number of z-bubbles attaining value z within [0, 1]? and of diameter > m’z?

is bounded by 6/(10°23). Such m’ exists by Corollary 3. Let Ny be so large
that the expected number of z-bubbles that attain value x within [0, 1]? and
do not contain a square of side 22270 with a vertex within [0, 1]? is bounded
by §/(10%°23). Let v = 6222720 /1019, Now choose m so large that
m/ 5 2No -3

— < W 270,
Fix K so that for ¢ the constant of Lemma 9, (K — 2)?/5m > K/4,
Zr}O C2re—2TK/4 < 552_2N°/(m21010).

Divide up [g,1]? into a finite number of rectangles R!, i € I, with the
property that, for all i, R* = [s?,t!] satisfies

. <1+47.
(s') (S’)
We wish to show that as x — 0, the number of z-bubbles that intersect
boundary d R; has small expectation and that N, (R;) the number of z-bubbles
which are contained inside R; is close to (up to terms of order §L(R;))

/ stdL(st)
in probability.

To economize on notation, we drop the i suffix and consider a rectangle R
contained inside [e, 1].

Given z small, we divide up R = [x1,x2] X [y1, y2] into equal rectangles of
horizontal side equal to

N

2 _
inf{r > nr such that M S Z}
1 r

and similarly of vertical side

2 _
inf{r > mr_ such that M S Z}

X1 T
Let the grid points be (¢;,s;) i =1,...,N,j=1,..., M, with
ti+1 —t; > 0 and constant in i, 5j4+1 — s > 0 and constant in j.

Let A; ;, (i,7) € [1,N] x [1, M], be the rectangle from the grid with left-
bottom vertex (t;, s;). Let rectangle A ; C A; ; have bottom left vertex equal
to (t;,s;) and have horizontal side length (s1/s;)(t2 — t1) and vertical side
length (t1/t:)(s2 — s1).

Let X;; be the number of x-bubbles contained in Aj ;, of size at least
vzt /t;5;. By way of motivation for the introduction of the subrectangles A; s
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note that Theorem 2 may be applied to the conditional law of the X;; as z
tends to zero so that the conditional laws have the same distribution. Let X f]{
be the number of z-bubbles contained in A; ; if [W(t;,s;)| < Kz, and equal
to 0 otherwise.

Lemma 10. For K as fized above and all = sufficiently small

1
B| S0t~ X < o5 1

ij

Proof. Let Z.,r=0,1,2,..., be equal to

E Xijlw (t:,5)|€ler Ko 271 Kz) 5

%]

then, for = sufficiently small,

E[Z,] = ZE[Xijf\W(ti,Sj)|e[erz,erKx)]

ij

=Y P{|W(ti,s;)| € [2"Kz,2" ' Kx)}
YOXE[Xy | Wt s5)| € 27K, 27 Kx))]

K2"x r_o)2
< 22No 2 —(K2"=2)%/(5m)
m ; —e
< |R| ¢2m22No e =K2/4) (c43),

Where for the penultimate inequality we used Lemma 9 and our choice of K.
Thus E[Y 2, Z,] < §|R|/(10*23) by our choice of K. 0

We have introduced a collection of squares A;; with side length of order
ma?. We will shortly consider Y, j ijf , which after Lemma 10 is close to
Zij X;;j. We have to treat the remaining bubbles which achieve value z/2
within R. A priori, this number could be extremely large, in principle of order
|R|/23. However, given Corollaries 2 and 3, we need only consider bubbles of
diameter bounded by m’z? having area at least yo*. Given this we are dealing
with bubbles close to the edges of the grid, which is to say bubbles entirely
contained in a non-random set of very small Lebesgue measure. This is the
simple fact behind Lemma 11 below.

Let Z be equal to the number of z-bubbles, G, contained in R of diameter
< m/z? and of area > 272Nogz? and so that there does not exist an (4, j) such
that G contributes to Xsz

26

Lemma 11. E[Z] < W

|R| for x small.
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Proof. By Lemma 10, it will suffice to consider bubbles that do not contribute
to X; ; for any (4, j).
Let D = R/U;; A; ;. Then if a bubble is not within A; ; and is of di-

ameter less than m x2 then it must be completely contained in pm'=* , the

m/x? envelope of D. The Lebesgue measure of D™ @ s readily seen to be

bounded by

2 2
g M'a” + yma” 8m’> < 92Nog242| R|/10°
m

|R| < (87 +

ma?

by our choice of m and . Now the expectation of

/ AW (ts)e.20) ds dt

is bounded by (z/¢)|D™**| < 27-2No§2|R|2/108 since by our restriction to
(,1]? the density at any point of W (t) < 1/(2¢). Consequently the expecta-
tion of the number of such z-bubbles (necessarily of area at least 272Noz4) is
bounded by 6| R|/(108z3). O

Proposition 2. As x tends to zero,

6E[<Z W (ti,s;)/x,m) [, s])<Km)2:| — 0.

Proof. Note that Xl-lj( and g7 (|W (t;, s;)|/x, m) are bounded. The expression
of interest is equal to

2
I6ZE|:(X5 - gFY (W(tla Sj)/xa m)I\W(ti,Sjﬂng) :|
,J

+28 Z E[(Xg —g" (W(ti, Sj)/.’L', m)I\W(ti,sj)|<K:c>

7,k
X (Xf,g — g'Y(W(ti, sk)/x, m)I|W(ti,sk)|<Km)j|
—|—a?6ZEK (W(tivSj)/xvm)I\W(ti,sj)KKz)

0,5,k
X (Xé - 9" (W(tw, Sj)/x7m)I|W(tk,s]-)\<Km>:|

Z E[(Xg_g’Y(W(tH5])/Ivm)I\W(tz,s])|§Kx)
i j#g

X (Xil’(j’ -9’ (W(ti/’Sj/)/l’am)I\W(ti,7sj,)\<Kw>}
11\3
< Cxb —:z:+C” 6( 2):1:
X

a0 3 B|(XE g (Wlts)/rom) s i)
R
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X (XlKj — g (W (tir, s5)/x, m)I\W(ti,7sj,)\<Kx)}
<C"z+C" sup EKXZI; —g" (W(ti, sj)/z, m)I‘W(ti,sj)KKQJ)
i A
(Xl/j/ -9 (W(ty,sj)/x, m)I|W(t(i7s;)‘<Kr)
| W (t:,59)] < K, (Wt 5] < Ko

Thus it remains to prove that the last term on the right tends to zero. If i < 4/,
j < j', then we clearly have that XX ;+ 1s conditionally independent of ij{ ,
W (t;,s;) given W(ty,s;) and so the desired conclusion in this case follows
directly from 8. So we treat the case i < i’, j > j' (the case i > i', j < j/, is
the same).

We consider Xf,(j, — g (W (ts,sj), m)I|W(ti,,sj,|<K,;. We condition on:

(1) The white noise in square [t;, ti11] X [s;7, Sj/41];

(ii) W (ts,s;) (necessarily < Kz in magnitude);

(i) XX

Now notice that on [ty ti11] X [/, Sjr4+1]

W(ta S) = W(tl’ ) Sj/)
W (t,s5) = Wit s0) (= Ba(t))
+W(tir,s) = Wit s5) (= Ba(s))
+W(ta S) - W(t7 Sj') - W(ti'v S) + W(ti'v Sj/) ( = W3(Sa t))
B, B, W3 are independent. (Bi, W3) is in addition, independent of (i), (ii)
and (iii) above. By(t) can be written as:

a) W(ti, S) - W(ti, Sj/) +

b) W(ti+1, S) - W(ti+1, Sj/) - W(ti, S) + W(ti, Sj/) +

C) W(ti/,s) - W(tll, Sj/) - W(ti+1, S) + W(ti+1, Sj/)

Now these three processes are independent c¢) is independent of a) b) (i),
(ii) and (iii) ). b) is (with probability tending to one as  — 0) < |z|*/? in
supremum norm while given (i), (ii), (iii) a) is converging in distribution to
a speed t; Brownian motion, independent of Bj.

The result now follows by Theorem 2.1 and the boundedness of random
variables concerned. O

Proof of Theorem 1. Given Proposition 2 and Lemma 1, we have

(ZX 9 (Wi, o, /2, m)) >,
2" g (W(ti, s5)/z,m) Lxlyl/RdL(u,u)(/zgv(I,m)dx),

K
S0 x3ZXffj = :L’1y1/R dL(u,v) (/ g7 (x,m) d:z:).

K
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Now, recall that we subdivided [g,1]? into disjoint rectangles R; so we
reintroduce the suffixes ¢ then

233 (xS c/ stdL(st) + 6’0 (/ dL(st))
i gl [e,1]2 [0,1]
for some ¢ > 0.

Now if X is equal to the number of z-bubbles contained in [0,1]? then
X — >0, > (X)) counts the z-bubbles that

a) are of diameter > m’z?,

b) are of size < 27 2Nog?,

¢) achieve value z in [0,¢] x [0,1] or [0, 1] x [0, €],

d) are contained in R; for some 7 but not in X/, for any 1,

e) intersect dR; for some ¢ but are of area > 272Nogt and diameter <
2
m'x

But we have shown that the expectation of bubbles satisfying a) — c)
is bounded by §/23, the expectation of bubbles satisfying d) < Ca3§|R;| <
C6 /23 for C not depending on . Those bubbles satisfying e) have expectation
bounded by C(§)M/x? by an argument similar to that used in the proof of
Lemma 11. We are done by the arbitrariness of 4. O
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