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Knight’s well-known theorem says that orthogonal continuous local martin-
gales, when time-changed by their brackets, become independent Brownian
motions (see [1], [7]–[11]). What can be said when the given local martingales
are not orthogonal? The standard way to deal with this case is to orthogo-
nalize them, for instance with the Gram–Schmidt algorithm. This is indeed
what was done by Knight himself when first using his theorem (see [9], The-
orem 2.2); but he was working in a particular setting (Hunt processes) and
did not give explicit formulas. Other examples where this orthogonalization
is used are references [3] and [12].

The goal of this short note is to provide expressions as explicit as possible
to describe what is obtained when Knight’s theorem is applied after orthogo-
nalizing a family of continuous local martingales. Note that to orthogonalize
the family of martingales we make use of some “local transformation” based
on the matrix of predictable quadratic characteristics.

If A is a matrix, A′ will denote the transpose of A. We fix a filtered
probability space (Ω,F , (Ft)t�0,P) satisfying the usual conditions. We start
by recalling Knight’s theorem:

Theorem 1. Let M = (M(t))t�0, M(t) = (M1(t), . . . ,Mn(t))′, be a n-
dimensional continuous local martingale with orthogonal components, starting
from zero. Suppose that on the same filtered probability space there exists a
standard Brownian motion β = (β(t))t�0, β(t) = (β1(t), . . . , βn(t))′, starting
from zero and independent of M .

Then the process B = (B(t))t�0, B(t) = (B1(t), . . . , Bn(t))′,

Bk(t) =

{
Mk(τkt ), if 〈Mk,Mk〉(∞) > t,

Mk(∞) + βk(t− 〈Mk,Mk〉(∞)), if 〈Mk,Mk〉(∞) < t,
(1)

is a Brownian motion, where
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τkt = inf{s : 〈Mk,Mk〉(s) > t}.

Remark 1. The one-dimensional version of this result was proved in [2], [4].

Remark 2. The processes Bk and B are Brownian motions relative to their
natural filtrations

(
FBk
t

)
t�0

and
(∨

iF
Bi
t

)
t�0

respectively.

Now we are given M = (M(t))t�0, M(t) = (M1(t), . . . ,Mn(t))′, a column-
vector of continuous local martingales starting from zero.

Denote by
〈M〉(t) =

(
〈Mi,Mj〉(t)

)
1�i,j�n

the matrix of predictable quadratic characteristics of M (see [5], [6]), and set

C(t) =
(

d〈Mi,Mj〉
da

(t)
)

1�i,j�n
, (2)

where

a(t) = tr〈M〉(t) =
n∑

i=1

〈Mi,Mi〉(t).

The matrix C is predictable symmetric non-negative. There exists a pre-
dictable orthogonal matrix T and a predictable diagonal matrix D such that

T ′CT = D = (di)1�i�n, (3)

where all di � 0, Q-a.s., where Q is the measure on the predictable σ-field
such that dQ = da× dP. The matrix T can be chosen predictable because its
columns are the orthonormal basis of eigenvectors of C ; and di, i = 1, . . . , n,
are the eigenvalues of C.

Theorem 2. Let M = (M(t))t�0, M(t) = (M1(t), . . . ,Mn(t))′, be a n-
dimensional continuous local martingale starting from zero, with matrix C
of predictable local quadratic characteristics (see (2)). Suppose that on the
same filtered probability space there exists a standard Brownian motion β =
(β(t))t�0, β(t) = (β1(t), . . . , βn(t))′, starting from zero and independent of
M . Then

(i) the process X = (X(t))t�0, X(t) = (X1(t), . . . , Xn(t))′, given by

X(t) =
∫ t

0

T ′(s) dM(s) (4)

is a n-dimensional continuous local martingale with orthogonal components;
the matrix of predictable quadratic characteristics of X equals

〈X〉(t) =
∫ t

0

D(s) da(s) =
(∫ t

0

di(s) da(s)
)

1�i�n
; (5)
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(ii) the process B = (B(t))t�0, B(t) = (B1(t), . . . , Bn(t))′, is a n-dimen-
sional Brownian motion, where

Bk(t) =

{
Xk(τkt ), if 〈Xk, Xk〉(∞) > t,

Xk(∞) + βk(t− 〈Xk, Xk〉(∞)), if 〈Xk, Xk〉(∞) < t,
(6)

〈Xk, Xk〉(t) =
∫ t

0

dk(s) da(s),

τkt = inf{s : 〈Xk, Xk〉(s) > t}.

Proof. (i) The equality E[X(T )X ′(T )] = E[〈X〉(T )], valid for any bounded
stopping time T , and (3) imply that

〈X〉(t) =
(
〈Xi, Xj〉(t)

)
1�i,j�n =

∫ t

0

T ′(s) d〈M〉(s)T (s)

=
∫ t

0

T ′CT (s) da(s) =
∫ t

0

D(s) da(s)

=
(∫ t

0

di(s) da(s)
)

1�i�n
.

Hence (5). Since the matrix 〈X〉 is diagonal, the components of the martingale
X are orthogonal.

The assertion (ii) follows from (i) and Theorem 1. 
�

Remark 3. Formula (4) defines a “local transformation” of the martingale M
to a martingale with orthogonal components.

Remark 4. Relations (4), (6) imply that

M(t) =
∫ t

0

T (s) dB ◦ 〈M,M〉(s), t � 0,

where

B ◦ 〈M,M〉(s) =
(
B1

(
〈M1,M1〉(s)

)
, . . . , Bn

(
〈Mn,Mn〉(s)

))′
.

Remark 5. An original extension of Knight’s theorem for a finite or countable
family of continuous local martingales M1,M2, . . . such that 〈Mi,Mj〉 = 0, for
all i �= j, is given by Kallenberg ([7], Proposition 16.8). He uses an isometry
between Gaussian processes and some continuous martingales to obtain the
independence of processes like B1, B2, . . . in (6); this provides a new proof of
Knight’s theorem, in a coordinate-free framework. Using this, Theorem 2 can
be extended to the case of Hilbert-valued continuous local martingales.
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in Maths 714, Springer, Berlin.

7. Kallenberg, O. (1997) Foundation of Modern Probability. Springer Series: Prob-
ability and its Applications, Springer, Berlin.

8. Knight, F. (1970) A reduction of continuous square-integrable martingales to
Brownian motion. Lect. Notes in Maths 190, Springer, Berlin.

9. Knight, F. (1970) An infinitesimal decomposition for a class of Markov processes.
Ann. Math. Statist. 41, p. 1510–1529.

10. Kurtz, Th. (1980) Representation of Markov processes as multiparameter time
changes. Annals of Probability 8, p. 682–715.

11. Meyer, P.A. (1971) Démonstration simplifiée d’un théorème de Knight. Sémi-
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